scispace - formally typeset
Open AccessJournal ArticleDOI

Finding community structure in very large networks.

Reads0
Chats0
TLDR
A hierarchical agglomeration algorithm for detecting community structure which is faster than many competing algorithms: its running time on a network with n vertices and m edges is O (md log n) where d is the depth of the dendrogram describing the community structure.
Abstract
The discovery and analysis of community structure in networks is a topic of considerable recent interest within the physics community, but most methods proposed so far are unsuitable for very large networks because of their computational cost. Here we present a hierarchical agglomeration algorithm for detecting community structure which is faster than many competing algorithms: its running time on a network with n vertices and m edges is O (md log n) where d is the depth of the dendrogram describing the community structure. Many real-world networks are sparse and hierarchical, with m approximately n and d approximately log n, in which case our algorithm runs in essentially linear time, O (n log(2) n). As an example of the application of this algorithm we use it to analyze a network of items for sale on the web site of a large on-line retailer, items in the network being linked if they are frequently purchased by the same buyer. The network has more than 400 000 vertices and 2 x 10(6) edges. We show that our algorithm can extract meaningful communities from this network, revealing large-scale patterns present in the purchasing habits of customers.

read more

Citations
More filters
Posted Content

Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters

TL;DR: In this article, the authors employ approximation algorithms for the graph partitioning problem to characterize as a function of size the statistical and structural properties of partitions of graphs that could plausibly be interpreted as communities.
Journal ArticleDOI

Link communities reveal multiscale complexity in networks

TL;DR: In this article, the authors show that link communities are fundamental building blocks that reveal overlap and hierarchical organization in networks, and show that a large social network contains hierarchically organized community structures spanning inner-city to regional scales while maintaining pervasive overlap.
Journal ArticleDOI

Community detection in networks: A user guide

TL;DR: In this paper, the authors present a guided tour of the main aspects of community detection in networks and point out strengths and weaknesses of popular methods, and give directions to their use.
Journal ArticleDOI

Survey: Graph clustering

TL;DR: This survey overviews the definitions and methods for graph clustering, that is, finding sets of ''related'' vertices in graphs, and presents global algorithms for producing a clustering for the entire vertex set of an input graph.
Journal ArticleDOI

Comparing community structure identification

TL;DR: In this article, the authors compare several approaches to community structure identification in terms of sensitivity and computational cost, and find that the most accurate methods tend to be more computationally expensive, and that both aspects need to be considered when choosing a method for practical purposes.
References
More filters
Journal ArticleDOI

Collective dynamics of small-world networks

TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.

疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A

宁北芳, +1 more
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Journal ArticleDOI

Statistical mechanics of complex networks

TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Journal ArticleDOI

The Structure and Function of Complex Networks

Mark Newman
- 01 Jan 2003 - 
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Related Papers (5)