scispace - formally typeset
Open AccessJournal ArticleDOI

Finding community structure in very large networks.

Reads0
Chats0
TLDR
A hierarchical agglomeration algorithm for detecting community structure which is faster than many competing algorithms: its running time on a network with n vertices and m edges is O (md log n) where d is the depth of the dendrogram describing the community structure.
Abstract
The discovery and analysis of community structure in networks is a topic of considerable recent interest within the physics community, but most methods proposed so far are unsuitable for very large networks because of their computational cost. Here we present a hierarchical agglomeration algorithm for detecting community structure which is faster than many competing algorithms: its running time on a network with n vertices and m edges is O (md log n) where d is the depth of the dendrogram describing the community structure. Many real-world networks are sparse and hierarchical, with m approximately n and d approximately log n, in which case our algorithm runs in essentially linear time, O (n log(2) n). As an example of the application of this algorithm we use it to analyze a network of items for sale on the web site of a large on-line retailer, items in the network being linked if they are frequently purchased by the same buyer. The network has more than 400 000 vertices and 2 x 10(6) edges. We show that our algorithm can extract meaningful communities from this network, revealing large-scale patterns present in the purchasing habits of customers.

read more

Citations
More filters
Journal ArticleDOI

Polarization of the vaccination debate on Facebook

TL;DR: In this paper, a quantitative analysis of 2.6 million users with 298,018 Facebook posts over a time span of seven years and five months was performed to assess whether users' attitudes are polarized on the topic of vaccination on Facebook and how this polarization develops over time.
Journal ArticleDOI

Improving tourism destination governance: a complexity science approach

TL;DR: In this article, the effect of different management actions are modelled, producing experimental results that provide information about the system that is being managed, and used to refine strategies and governance styles.
Journal Article

A Clustering Approach for Collaborative Filtering Recommendation Using Social Network Analysis

TL;DR: This article proposes a clustering approach based on the social information of users to derive the recommendations and shows that this clustering technique based CF performs better than traditional CF algorithms.
Journal ArticleDOI

Big Data and supply chain management: a review and bibliometric analysis

TL;DR: This paper reviews the literature on ‘Big Data and supply chain management (SCM)’, dating back to 2006 and provides a thorough insight into the field by using the techniques of bibliometric and network analyses.
References
More filters
Journal ArticleDOI

Collective dynamics of small-world networks

TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.

疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A

宁北芳, +1 more
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Journal ArticleDOI

Statistical mechanics of complex networks

TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Journal ArticleDOI

The Structure and Function of Complex Networks

Mark Newman
- 01 Jan 2003 - 
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Related Papers (5)