scispace - formally typeset
Proceedings ArticleDOI

Five-level GTO inverters for large induction motor drives

R.W. Menzies, +2 more
- Vol. 30, Iss: 4, pp 938-944
TLDR
It is shown that a combination of several PWM techniques offers the best solution for the drives application and that large induction motors with ratings up to 22 MVA, 7.46 kV may be supplied by the five-level inverter using presently available 4.5 kV, 3.0 kA GTO thyristors.
Abstract
The development of large induction motor drives with low torque ripple and fast dynamic response for new or retrofit applications has been limited by the device ratings and problems of series connections. This paper investigates the use of a five-level GTO voltage-sourced inverter for large induction motor drives. The advantages of such a drive are that single GTO thyristors may be used at each level, thereby avoiding the need for series connection of the thyristors. The thyristors are well protected from overvoltages by the clamping action of the DC supply capacitors. The disadvantages are that each DC level requires a separate supply, four in the case of the five-level inverter, and that the devices are not equally loaded. This paper reviews the basic operation of the five-level inverter and possible PWM voltage/frequency control techniques for the specific application of induction motor drives. The simulation results clearly show the unequal loading of the devices and the need for independent voltage supplies for the five levels. It is shown that a combination of several PWM techniques offers the best solution for the drives application. The conclusions indicate that large induction motors with ratings up to 22 MVA, 7.46 kV may be supplied by the five-level inverter using available 4.5 kV, 3.0 kA GTO thyristors. The recommended supply for such an inverter with full regenerative operation over the complete speed range is four, four-quadrant converters in a quasi-24-pulse configuration. >

read more

Citations
More filters
Proceedings ArticleDOI

Optimum harmonic reduction with a wide range of modulation indexes for multilevel converters

TL;DR: Experimental results indicate that the proposed modulation technique applying in multilevel voltage source converters suitable for high voltage power supplies and flexible AC transmission system (FACTS) devices is effective for harmonic reduction, and that both theoretical and simulation results are well validated.
Journal ArticleDOI

Single-phase, 17-Level Hybridized Cascaded Multi-level Inverter

TL;DR: In this article, a single-phase, 17-level, cascaded multi-level inverter topology is proposed, where the multi-carrier, phase disposition pulse-width modulation scheme is employed to generate the gating signals for the power switches.
Proceedings ArticleDOI

Evaluation of soft switching techniques for the neutral-point-clamped (NPC) inverter

TL;DR: In this article, the authors evaluate the topological variants of the soft switching NPC inverter based on the resonant pole techniques and compare the features of the resultant soft switching schemes with conventional dissipative and regenerative snubbers.
Journal ArticleDOI

A Carrier-Based PWM Strategy Providing Neutral-Point Voltage Oscillation Elimination for Multi-Phase Neutral Point Clamped 3-Level Inverter

TL;DR: The experimental results indicate that the proposed PWM strategy has better NP voltage control abilities and is consistent with the principle of virtual space vector PWM.
References
More filters
Journal ArticleDOI

A new multilevel PWM method: a theoretical analysis

TL;DR: In this article, a generalization of the Pulse Width Modulation (PWM) subharmonic method for controlling single-phase or three-phase multilevel voltage source inverters (VSIs) is considered.
Journal ArticleDOI

Generalized Structure of a Multilevel PWM Inverter

TL;DR: In this article, a generalized structure of a multilevel voltage source thyristor inverter is proposed to decrease the harmonic distortion in the output waveform without decreasing the inverter power output.
Proceedings Article

Switching frequency optimal PWM control of a three-level inverter

TL;DR: In this article, a pulsewidth modulation (PWM) method for the control of a three-level inverter is described, which works with a constant carrier frequency not synchronized with fundamental stator frequency.
Journal ArticleDOI

Switching frequency optimal PWM control of a three-level inverter

TL;DR: In this article, a switching frequency optimal PWM method (SFO-PWM) was proposed for the control of a three-level inverter with a DC-link neutral point not stabilized from the power input converter.
Proceedings ArticleDOI

Control strategy for a three phase AC traction drive with three-level GTO PWM inverter

TL;DR: A control strategy developed for two-level inverters is applied to the three-level gate-turn-off PWM inverter, resulting in results from computer simulation for a traction motor with 1400 kW nominal power.
Related Papers (5)
Trending Questions (1)
Based on the voltage, how many possible devices can the Gyrotorhidrikoz power at each voltage level?

The paper does not provide information about the number of possible devices that the Gyrotorhidrikoz power at each voltage level.