scispace - formally typeset
Journal ArticleDOI

Free-radical theory of aging. Increasing the functional life span.

TLDR
The extensive studies based on this possibility hold promise that the ALE-B can be extended to >85 years and the maximum life span increased.
Abstract
Aging is the accumulation of changes that increase the risk of death. Aging changes can be attributed to development, genetic defects, the environment, disease, and an inborn process: the aging process. The latter is the major risk factor for disease and death after age 28 in the developed countries. In these countries, average life expectancies at birth (ALE-B) now range from 76 to 79 years, 6-9 years less than the limit of approximately 85 years imposed by aging. Aging changes may be caused by free radical reactions. The extensive studies based on this possibility hold promise that the ALE-B can be extended to >85 years and the maximum life span increased.

read more

Citations
More filters
Journal ArticleDOI

The Free Radical Theory of Aging Matures

TL;DR: The status of the free radical theory of aging is reviewed, by categorizing the literature in terms of the various types of experiments that have been performed, which include phenomenological measurements of age-associated oxidative stress, interspecies comparisons, dietary restriction, and the ongoing elucidation of the role of active oxygen in biology.
Journal ArticleDOI

Calcium, ATP, and ROS: a mitochondrial love-hate triangle

TL;DR: A "two-hit" hypothesis is developed, in which Ca(2+) plus another pathological stimulus can bring about mitochondrial dysfunction, and the delicate balance between the positive and negative effects of Ca( 2+) and the signaling events that perturb this balance is highlighted.
Journal ArticleDOI

Extended longevity in mice lacking the insulin receptor in adipose tissue.

TL;DR: A reduction of fat mass without caloric restriction can be associated with increased longevity in mice, possibly through effects on insulin signaling.
Journal ArticleDOI

Oxidative processes and antioxidative defense mechanisms in the aging brain.

TL;DR: A newly discovered, potentially highly important antioxidant in the brain is the indole melatonin, which is more effective than glutathione in scavenging the highly toxic hydroxyl radical and also more efficient than vitamin E in neutralizing the peroxyl radical.
Journal ArticleDOI

A review of the evidence supporting melatonin's role as an antioxidant

TL;DR: Melatonin is remarkably potent in protecting against free radical damage induced by a variety of means, and DNA damage resulting from either the exposure of animals to the chemical carcinogen safrole or to ionizing radiation is markedly reduced when melatonin is co‐administered.
References
More filters
Book

Free radicals in biology and medicine

TL;DR: 1. Oxygen is a toxic gas - an introduction to oxygen toxicity and reactive species, and the chemistry of free radicals and related 'reactive species'
Journal ArticleDOI

Aging: A Theory Based on Free Radical and Radiation Chemistry

TL;DR: It seems possible that one factor in aging may be related to deleterious side attacks of free radicals (which are normally produced in the course of cellular metabolism) on cell constituents.
Journal ArticleDOI

Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis

TL;DR: Tight genetic linkage between FALS and a gene that encodes a cytosolic, Cu/Zn-binding superoxide dismutase (SOD1), a homodimeric metalloenzyme that catalyzes the dismutation of the toxic superoxide anion O–2 to O2 and H2O2 is reported.
Journal ArticleDOI

Role of Oxidative Stress in Development of Complications in Diabetes

TL;DR: Structural characterization of the cross-links and other products accumulating in collagen in diabetes is needed to gain a better understanding of the relationship between oxidative stress and the development of complications in diabetes.
Related Papers (5)