scispace - formally typeset
Open AccessBook

Gaussian Processes for Machine Learning

Reads0
Chats0
TLDR
The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics, and deals with the supervised learning problem for both regression and classification.
Abstract
A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Are we ready for autonomous driving? The KITTI vision benchmark suite

TL;DR: The autonomous driving platform is used to develop novel challenging benchmarks for the tasks of stereo, optical flow, visual odometry/SLAM and 3D object detection, revealing that methods ranking high on established datasets such as Middlebury perform below average when being moved outside the laboratory to the real world.
Journal Article

Random search for hyper-parameter optimization

TL;DR: This paper shows empirically and theoretically that randomly chosen trials are more efficient for hyper-parameter optimization than trials on a grid, and shows that random search is a natural baseline against which to judge progress in the development of adaptive (sequential) hyper- parameter optimization algorithms.
Proceedings Article

Practical Bayesian Optimization of Machine Learning Algorithms

TL;DR: This work describes new algorithms that take into account the variable cost of learning algorithm experiments and that can leverage the presence of multiple cores for parallel experimentation and shows that these proposed algorithms improve on previous automatic procedures and can reach or surpass human expert-level optimization for many algorithms.
Journal ArticleDOI

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

TL;DR: In this article, the authors introduce physics-informed neural networks, which are trained to solve supervised learning tasks while respecting any given laws of physics described by general nonlinear partial differential equations.
Journal ArticleDOI

The future of employment: How susceptible are jobs to computerisation?

TL;DR: In this paper, a Gaussian process classifier was used to estimate the probability of computerisation for 702 detailed occupations, and the expected impacts of future computerisation on US labour market outcomes, with the primary objective of analyzing the number of jobs at risk and the relationship between an occupations probability of computing, wages and educational attainment.
References
More filters

Numerical recipes in C

TL;DR: The Diskette v 2.06, 3.5''[1.44M] for IBM PC, PS/2 and compatibles [DOS] Reference Record created on 2004-09-07, modified on 2016-08-08.
Book

Neural networks for pattern recognition

TL;DR: This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition, and is designed as a text, with over 100 exercises, to benefit anyone involved in the fields of neural computation and pattern recognition.
Journal ArticleDOI

Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images

TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.
Book

Pattern classification and scene analysis

TL;DR: In this article, a unified, comprehensive and up-to-date treatment of both statistical and descriptive methods for pattern recognition is provided, including Bayesian decision theory, supervised and unsupervised learning, nonparametric techniques, discriminant analysis, clustering, preprosessing of pictorial data, spatial filtering, shape description techniques, perspective transformations, projective invariants, linguistic procedures, and artificial intelligence techniques for scene analysis.
Journal ArticleDOI

Generalized Additive Models.

Related Papers (5)