scispace - formally typeset
Open AccessBook

Gaussian Processes for Machine Learning

Reads0
Chats0
TLDR
The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics, and deals with the supervised learning problem for both regression and classification.
Abstract
A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Are we ready for autonomous driving? The KITTI vision benchmark suite

TL;DR: The autonomous driving platform is used to develop novel challenging benchmarks for the tasks of stereo, optical flow, visual odometry/SLAM and 3D object detection, revealing that methods ranking high on established datasets such as Middlebury perform below average when being moved outside the laboratory to the real world.
Journal Article

Random search for hyper-parameter optimization

TL;DR: This paper shows empirically and theoretically that randomly chosen trials are more efficient for hyper-parameter optimization than trials on a grid, and shows that random search is a natural baseline against which to judge progress in the development of adaptive (sequential) hyper- parameter optimization algorithms.
Proceedings Article

Practical Bayesian Optimization of Machine Learning Algorithms

TL;DR: This work describes new algorithms that take into account the variable cost of learning algorithm experiments and that can leverage the presence of multiple cores for parallel experimentation and shows that these proposed algorithms improve on previous automatic procedures and can reach or surpass human expert-level optimization for many algorithms.
Journal ArticleDOI

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

TL;DR: In this article, the authors introduce physics-informed neural networks, which are trained to solve supervised learning tasks while respecting any given laws of physics described by general nonlinear partial differential equations.
Journal ArticleDOI

The future of employment: How susceptible are jobs to computerisation?

TL;DR: In this paper, a Gaussian process classifier was used to estimate the probability of computerisation for 702 detailed occupations, and the expected impacts of future computerisation on US labour market outcomes, with the primary objective of analyzing the number of jobs at risk and the relationship between an occupations probability of computing, wages and educational attainment.
References
More filters
Journal ArticleDOI

Stochastic models for closed boundary analysis: Representation and reconstruction

TL;DR: The stochastic model representing the closed boundary is invariant to transformations like sealing, translation, choice of starting point, and rotation over angles that are multiples of 2\pi/N, where N is the number of observations.
Journal ArticleDOI

PAC-Bayesian Stochastic Model Selection

TL;DR: A PAC-Bayesian performance guarantee for stochastic model selection that is superior to analogous guarantees for deterministic model selection and shown that the posterior optimizing the performance guarantee is a Gibbs distribution.
Proceedings Article

Semiparametric Latent Factor Models

TL;DR: A semiparametric model for regression and classification problems involving multiple response variables makes use of a set of Gaussian processes to model the relationship to the inputs in a nonparametric fashion.
Book

A First Course in Fourier Analysis

TL;DR: In this paper, a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions is presented.
Journal ArticleDOI

Variational Gaussian process classifiers

TL;DR: The variational methods of Jaakkola and Jordan are applied to Gaussian processes to produce an efficient Bayesian binary classifier.
Related Papers (5)