scispace - formally typeset
Journal ArticleDOI

Giant piezoresistance effect in silicon nanowires

Rongrui He, +1 more
- 01 Oct 2006 - 
- Vol. 1, Iss: 1, pp 42-46
Reads0
Chats0
TLDR
It is reported that Si nanowires possess an unusually large piezoresistance effect compared with bulk, which may have significant implications in nanowire-based flexible electronics, as well as in nanoelectromechanical systems.
Abstract
The piezoresistance effect of silicon1 has been widely used in mechanical sensors2,3,4, and is now being actively explored in order to improve the performance of silicon transistors5,6. In fact, strain engineering is now considered to be one of the most promising strategies for developing high-performance sub-10-nm silicon devices7. Interesting electromechanical properties have been observed in carbon nanotubes8,9. In this paper we report that Si nanowires possess an unusually large piezoresistance effect compared with bulk. For example, the longitudinal piezoresistance coefficient along the 〈111〉 direction increases with decreasing diameter for p-type Si nanowires, reaching as high as −3,550 × 10−11 Pa–1, in comparison with a bulk value of −94 × 10−11 Pa−1. Strain-induced carrier mobility change and surface modifications have been shown to have clear influence on piezoresistance coefficients. This giant piezoresistance effect in Si nanowires may have significant implications in nanowire-based flexible electronics, as well as in nanoelectromechanical systems.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review

TL;DR: In this article, the authors present recent advancements in the development of flexible and stretchable strain sensors, including skin-mountable and wearable strain sensors for personalized health-monitoring, human motion detection, human-machine interfaces, soft robotics, and so forth.
Journal ArticleDOI

Progress in the production and modification of PVDF membranes

TL;DR: A comprehensive overview of recent progress on the production and modification of polyvinylidene fluoride (PVDF) membranes for liquid-liquid or liquid-solid separation can be found in this article.
Journal ArticleDOI

Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare.

TL;DR: The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed.
Journal ArticleDOI

Silicon nanowire radial p-n junction solar cells.

TL;DR: A low-temperature wafer-scale etching and thin film deposition method for fabricating silicon n-p core-shell nanowire solar cells and showed efficiencies up to nearly 0.5%, limited primarily by interfacial recombination and high series resistance.
Journal ArticleDOI

Review: Semiconductor Piezoresistance for Microsystems

TL;DR: This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of Piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.
References
More filters
Book

Semiconductor Devices: Physics and Technology

S. M. Sze
TL;DR: In this paper, the transmission coefficient of a symmetric resonance tunneling diode has been derived for a Symmetric Resonant-Tunneling Diode, and it has been shown that it can be computed in terms of the Density of States in Semiconductor.
Book

Semiconductor devices

Kanaan Kano
Journal ArticleDOI

Piezoresistance Effect in Germanium and Silicon

TL;DR: In this article, the complete tensor piezoresistance has been determined experimentally for these materials and expressed in terms of the pressure coefficient of resistivity and two simple shear coefficients.
PatentDOI

Stretchable form of single crystal silicon for high performance electronics on rubber substrates

TL;DR: In this article, the authors present stretchable and printable semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed, or otherwise deformed.
Related Papers (5)