scispace - formally typeset
Journal ArticleDOI

Heteronuclear decoupling in rotating solids

Reads0
Chats0
TLDR
In this article, a simple two pulse phase modulation (TPPM) scheme was proposed to reduce the residual linewidths arising from insufficient proton decoupling power in double resonance magic angle spinning (MAS) experiments.
Abstract
A simple two pulse phase modulation (TPPM) scheme greatly reduces the residual linewidths arising from insufficient proton decoupling power in double resonance magic angle spinning (MAS) experiments. Optimization of pulse lengths and phases in the sequence produces substantial improvements in both the resolution and sensitivity of dilute spins (e.g., 13C) over a broad range of spinning speeds at high magnetic field. The theoretical complications introduced by large homo‐ and heteronuclear interactions among the spins, as well as the amplitude modulation imposed by MAS, are explored analytically and numerically. To our knowledge, this method is the first phase‐switched sequence to exhibit improvement over continuous‐wave (cw) decoupling in a strongly coupled homogeneous spin system undergoing sample spinning.

read more

Citations
More filters
Journal ArticleDOI

REDOR-based heteronuclear dipolar correlation experiments in multi-spin systems: Rotor-encoding, directing, and multiple distance and angle determination

TL;DR: An improved and more sensitive approach to the determination of 1H-X dipolar couplings by spinning-sideband analysis is presented, termed REREDOR, which is applicable to XHn groups in rigid and mobile systems and bears some similarity to more elaborate separated local-field methods.
Journal ArticleDOI

Well-defined surface imido amido tantalum(v) species from ammonia and silica-supported tantalum hydrides.

TL;DR: The NMR studies on the fully 15N-labeled samples have led to unambiguous discrimination between imido, amido, and amino resonances of 2*, 2*x(15)NH(3), and [[triple bond]Si-15NH(2] through the combination of solid-state magic angle spinning (MAS), heteronuclear correlation (HETCOR), 2D proton double-quantum (DQ) single-Quantum (SQ) correlation
Journal ArticleDOI

Experimental and theoretical 17O NMR study of the influence of hydrogen-bonding on C=O and O-H oxygens in carboxylic solids.

TL;DR: In this article, a systematic solid-state 17O NMR study of a series of carboxylic compounds, maleic acid, chloromaleic acid and maleate, is reported.
Journal ArticleDOI

New insights into frustrated Lewis pairs: structural investigations of intramolecular phosphane-borane adducts by using modern solid-state NMR techniques and DFT calculations.

TL;DR: (11)B{(31)P} rotational echo double resonance (REDOR) experiments show systematic deviations from calculated curves based on the internuclear distances from X-ray crystallography, which suggest non-zero contributions from anisotropic indirect spin-spin (J anisotropy) interactions, thereby offering additional evidence for covalent bonding.
Journal ArticleDOI

Skin Membrane Electrical Impedance Properties under the Influence of a Varying Water Gradient

TL;DR: Subtle changes in the dynamics of the lipids due to mobilization and incorporation of cholesterol and long-chain lipid species into the fluid lipid fraction is suggested to occur upon hydration, which can explain the changes of the impedance response.
References
More filters
Journal ArticleDOI

Proton‐enhanced NMR of dilute spins in solids

TL;DR: In this article, the NMR signals of isotopically or chemically dilute nuclear spins S in solids can be enhanced by repeatedly transferring polarization from a more abundant species I of high abundance (usually protons) to which they are coupled.
Book

Principles of high-resolution NMR in solids

Abstract: 1 Introduction.- 2 Nuclear Spin Interactions in Solids.- 2.1 Basic Nuclear Spin Interactions in Solids.- 2.2 Spin Interactions in High Magnetic Fields.- 2.3 Transformation Properties of Spin Interactions in Real Space.- 2.4 Powder Spectrum Line Shape.- 2.5 The NMR Spectrum. Lineshapes and Moments.- 2.6 Magic Angle Spinning (MAS).- 2.7 Rapid Anisotropic Molecular Rotation.- 2.8 Line Shapes in the Presence of Molecular Reorientation.- 3 Multiple-Pulse NMR Experiments.- 3.1 Idealized Multiple-Pulse Sequences.- 3.2 The Four-Pulse Sequence (WHH-4).- 3.3 Coherent Averaging Theory.- 3.4 Application of Coherent Averaging Theory to Multiple-Pulse Sequences.- 3.5 Arbitrary Rotations and Finite Pulse Width in Multiple-Pulse Experiments.- 3.6 Second Averaging.- 3.7 The Influence of Pulse Imperfections on Multiple-Pulse Experiments.- 3.8 Resolution of Multiple-Pulse Experiments.- 3.9 Magic Angle Rotating Frame Line Narrowing Experiments.- 3.10 Modulation Induced Line Narrowing.- 3.11 Applications of Multiple-Pulse Experiments.- 4 Double Resonance Experiments.- 4.1 Basic Principles of Double Resonance Experiments.- 4.2 Cross-Polarization of Dilute Spins.- 4.3 Cross-Polarization Dynamics.- 4.4 Spin-Decoupling Dynamics.- 4.5 Application of Cross-Polarization Experiments.- 5 Two-Dimensional NMR Spectroscopy.- 5.1 Basic Principles of 2 D-Spectroscopy.- 5.2 2D-Spectroscopy of 13C-1H Interactions in Solids.- 5.3 Applications of 2D-Spectroscopy.- 6 Multiple-Quantum NMR Spectroscopy.- 6.1 Double-Quantum Decoupling.- 6.2 The Three-Level System Double Quantum Coherence.- 6.3 Multiple-Quantum Coherence.- 6.4 Selective Multiple-Quantum Coherence.- 6.5 Double-Quantum Cross-Polarization.- 7 Magnetic Shielding Tensor.- 7.1 Ramsey's Formula.- 7.2 Approximate Calculations of the Shielding Tensor.- 7.3 Proton Shielding Tensors.- 7.4 19F Shielding Tensors.- 7.5 13C Shielding Tensors.- 7.6 Other Shielding Tensors.- 8 Spin-Lattice Relaxation.- 8.1 Spin-Lattice Relaxation in the Weak Collision Limit.- 8.2 Spin-Lattice Relaxation in Multiple-Pulse Experiments.- 8.3 Application of Multiple-Pulse Experiments to the Investigation of Spin-Lattice Relaxation.- 8.4 Spin-Lattice Relaxation in Dilute Spin Systems.- 8.5 Selective Excitation and Spectral Diffusion.- 9 Appendix.- A Irreducible Tensor Representation of Spin Interactions.- B Rotations.- C General Line Shape Theory.- D Homogeneous, Inhomogeneous and Heterogeneous Lineshapes.- E Lineshape and Relaxation due to Fluctuating Chemical Shift Tensors.- F Time Evolution and Magnus Expansion.- G Coherent Versus Secular Averaging Theory.- H Applications of Average Hamiltonian Theory.- I Relaxation Theory.- 10 References.- 11 Subject Index.
Journal ArticleDOI

Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed

E. R. Andrew, +2 more
- 13 Dec 1958 - 
TL;DR: In this article, it was shown that when these weak side-spectra are included the second moment does indeed remain invariant even though the second moments of the central portion, which is all that is observed experimentally, becomes smaller.
Journal ArticleDOI

An improved sequence for broadband decoupling: WALTZ-16

TL;DR: In this paper, the effects of the proton irradiation sequence by means of a train of spin rotation operators, the overall effect at the end of the cycle being calculated by explicit matrix multiplication, the offset dependence of this proton response determined the residual splitting of the carbon-13 resonance and hence the effectiveness of the decoupling.
Related Papers (5)