scispace - formally typeset
Journal ArticleDOI

Hydrogen sorption in functionalized metal-organic frameworks.

Reads0
Chats0
TLDR
Five porous metal-organic frameworks based on linking zinc oxide clusters with benzene-1,4-dicarboxylate, naphthalene-2,6-dICarboxyate, 4,5,9,10-tetrahydropyrene- 2,7-divellyate, 2,3,5-6-Tetramethylbenzene-3,3-tris(4-benzoate) or benzene
Abstract
Five porous metal−organic frameworks based on linking zinc oxide clusters with benzene-1,4-dicarboxylate, naphthalene-2,6-dicarboxylate, 4,5,9,10-tetrahydropyrene-2,7-dicarboxylate, 2,3,5,6-tetramethylbenzene-1,4-dicarboxylate, or benzene-1,3,5-tris(4-benzoate) were synthesized in gram-scale quantities to measure their hydrogen uptake properties. Hydrogen adsorption isotherms measured at 77 K show a distinct dependence of uptake on the nature of the link. At 1 atm, the materials sorb between 4.2 and 9.3 molecules of H2 per formula unit. The results imply a trend in hydrogen uptake with the number of rings in the organic moiety.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The Chemistry and Applications of Metal-Organic Frameworks

TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Journal ArticleDOI

Hybrid porous solids: past, present, future

TL;DR: The state-of-the-art on hybrid porous solids, their advantages, their new routes of synthesis, the structural concepts useful for their 'design', aiming at reaching very large pores are presented.
Journal ArticleDOI

Hydrogen storage in metal–organic frameworks

TL;DR: This critical review of the current status of hydrogen storage within microporous metal-organic frameworks provides an overview of the relationships between structural features and the enthalpy of hydrogen adsorption, spectroscopic methods for probing framework-H(2) interactions, and strategies for improving storage capacity.
Journal ArticleDOI

A chromium terephthalate-based solid with unusually large pore volumes and surface area.

TL;DR: This crystal structure for porous chromium terephthalate, MIL-101, with large poresizes and surface area has potential as a nanomold for monodisperse nanomaterials, as illustrated here by the incorporation of Keggin polyanions within the cages.
References
More filters
Journal ArticleDOI

Reticular synthesis and the design of new materials

TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Journal ArticleDOI

Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage

TL;DR: Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups and can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl.
Journal ArticleDOI

Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties

TL;DR: In this paper, gas sorption isotherm measurements performed on the evacuated derivatives of four porous metal-organic frameworks (MOF-n), Zn(BDC)·(DMF)(H2O) (DMF = N,N‘-dimethylformamide, BDC = 1,4-benzenedicarboxylate) (MoF-2) and Zn3(bDC)3·6CH3OH(MOF)-3, Zn2(BTC)NO3·(C2H5OH
Journal ArticleDOI

Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties.

TL;DR: Novel microporous metal-organic framework material composed of Mn(II) and formate ions displays permanent porosity, high thermal stability, and size-selective gas sorption behavior and may find useful applications in gas separation and sensor.
Journal ArticleDOI

Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.

TL;DR: The wet spinning of silk monofilaments spun from a concentrated aqueous solution of soluble rc–spider silk protein (ADF-3; 60 kilodaltons) under modest shear and coagulation conditions showed toughness and modulus values comparable to those of native dragline silks but with lower tenacity.
Related Papers (5)