scispace - formally typeset
Journal ArticleDOI

Hydrogen storage methods

Andreas Züttel
- 17 Mar 2004 - 
- Vol. 91, Iss: 4, pp 157-172
Reads0
Chats0
TLDR
This paper reviews the various storage methods for hydrogen and highlights their potential for improvement and their physical limitations.
Abstract
Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today’s energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100 K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg·m−3, approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen is 70.8 kg·m−3, and large volumes, where the thermal losses are small, can cause hydrogen to reach a system mass ratio close to one. The highest volumetric densities of hydrogen are found in metal hydrides. Many metals and alloys are capable of reversibly absorbing large amounts of hydrogen. Charging can be done using molecular hydrogen gas or hydrogen atoms from an electrolyte. The group one, two and three light metals (e.g. Li, Mg, B, Al) can combine with hydrogen to form a large variety of metal–hydrogen complexes. These are especially interesting because of their light weight and because of the number of hydrogen atoms per metal atom, which is two in many cases. Hydrogen can also be stored indirectly in reactive metals such as Li, Na, Al or Zn. These metals easily react with water to the corresponding hydroxide and liberate the hydrogen from the water. Since water is the product of the combustion of hydrogen with either oxygen or air, it can be recycled in a closed loop and react with the metal. Finally, the metal hydroxides can be thermally reduced to metals in a solar furnace. This paper reviews the various storage methods for hydrogen and highlights their potential for improvement and their physical limitations.

read more

Citations
More filters
Journal ArticleDOI

Chemical and Physical Solutions for Hydrogen Storage

TL;DR: Different methods for hydrogen storage are discussed, including high-pressure and cryogenic-liquid storage, adsorptive storage on high-surface-area adsorbents, chemical storage in metal hydride and complex hydrides, and storage in boranes.
Journal ArticleDOI

Hydrogen Storage in Microporous Metal-Organic Frameworks with Exposed Metal Sites

TL;DR: The synthetic approaches employed thus far for producing frameworks with exposed metal sites are reviewed, the hydrogen uptake capacities and binding energies in these materials are summarized, and results from experiments used to probe independently the metal-hydrogen interaction in selected materials will be discussed.
Journal ArticleDOI

The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements

TL;DR: In this article, the current status of vehicular hydrogen storage is reviewed and research associated with the National Hydrogen Storage Project is discussed, and future plans through the International Partnership for the Hydrogen Economy (IPHE) are also presented.
Journal ArticleDOI

Nanostructured carbon for energy storage and conversion

TL;DR: In this paper, a review article summarizes the recent research progress on the synthesis of nanostructured carbon and its application in energy storage and conversion, and the common challenges in developing simple, scalable, and environmentally friendly synthetic and manufacturing processes, in controlling the nanoscale and high level structures and functions, and in integrating such materials with suitable device architectures are reviewed.
Book

Nanomaterials For Energy Conversion And Storage

TL;DR: The limitations and challenges of nanostructured materials while being used for solar cells, lithium ion batteries, supercapacitors, and hydrogen storage systems have also been addressed in this review.
References
More filters
Journal ArticleDOI

Hydrogen-storage materials for mobile applications

TL;DR: Recent developments in the search for innovative materials with high hydrogen-storage capacity are presented.
Journal ArticleDOI

Hydrogen Storage in Microporous Metal-Organic Frameworks

TL;DR: Inelastic neutron scattering spectroscopy of the rotational transitions of the adsorbed hydrogen molecules indicates the presence of two well-defined binding sites (termed I and II), which are associated with hydrogen binding to zinc and the BDC linker, respectively.
Journal ArticleDOI

Storage of hydrogen in single-walled carbon nanotubes

TL;DR: In this article, a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs) under conditions that do not induce adsorption within a standard mesoporous activated carbon.
Related Papers (5)