scispace - formally typeset
Journal ArticleDOI

Improving the performance of colloidal quantum-dot-sensitized solar cells.

TLDR
Several factors cooperate to improve the performance of quantum-dot-sensitized solar cells: an open structure of the wide bandgap electron collector, which facilitates a higher covering of the internal surface with the sensitizer, a surface passivation of TiO2 to reduce recombination and improved counter electrode materials.
Abstract
Solar cells based on a mesoporous structure of TiO2 and the polysulfide redox electrolyte were prepared by direct adsorption of colloidal CdSe quantum dot light absorbers onto the oxide without any particular linker. Several factors cooperate to improve the performance of quantum-dot-sensitized solar cells: an open structure of the wide bandgap electron collector, which facilitates a higher covering of the internal surface with the sensitizer, a surface passivation of TiO2 to reduce recombination and improved counter electrode materials. As a result, solar cells of 1.83% efficiency under full 1 sun illumination intensity have been obtained. Despite a relatively large short circuit current (J(sc) = 7.13 mA cm(-2)) and open circuit voltage (V(oc) = 0.53 V), the colloidal quantum dot solar cell performance is still limited by a low fill factor of 0.50, which is believed to arise from charge transfer of photogenerated electrons to the aqueous electrolyte.

read more

Citations
More filters
Journal ArticleDOI

Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy

TL;DR: The interpretation of the impedance parameters for determining the internal features of the device, concerning the carrier distribution, materials properties such as the density of states and/or doping of the semiconductors, and the match of energy levels for photoinduced charge generation and separation are emphasized.
Journal ArticleDOI

Quantum‐Dot‐Sensitized Solar Cells

TL;DR: Stability issues are adressed, coating methods are presented, performance is reviewed and special emphasis is given to the importance of energy-level alignment to increase the light to electric power conversion efficiency.
Journal ArticleDOI

Depleted-Heterojunction Colloidal Quantum Dot Solar Cells

TL;DR: In this article, the Schottky device was optimized and explained in terms of a depletion region driving electron−hole pair separation on the semiconductor side of a junction between an opaque low-work-function metal and a p-type CQD film.
Journal ArticleDOI

Recombination in Quantum Dot Sensitized Solar Cells

TL;DR: The strategies for depositing CdSe quantum dots on nanostructured mesoporous TiO(2) electrodes are summarized and the methods that facilitate improvement in the performance and stability of QDSCs are discussed.
References
More filters
Journal ArticleDOI

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Journal ArticleDOI

Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals

TL;DR: In this article, the extinction coefficient per mole of nanocrystals at the first exitonic absorption peak, e.g., for high-quality CdTe, CdSe, and CdS, was found to be strongly dependent on the size of the nanocrystal, between a square and a cubic dependence.
Journal ArticleDOI

Quantum dot solar cells

TL;DR: In this article, three QD solar cell configurations are described: (1) photoelectrodes comprising QD arrays, (2) QD-sensitized nanocrystalline TiO 2, and (3) QDs dispersed in a blend of electron- and hole-conducting polymers.
Journal ArticleDOI

Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films.

TL;DR: By using bifunctional surface modifiers (SH-R-COOH), CdSe quantum dots (QDs) have been assembled onto mesoscopic TiO(2) films and exhibits a photon-to-charge carrier generation efficiency of 12%.
Journal ArticleDOI

Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe−TiO2 Architecture

TL;DR: Two major findings are highlighted: ability to tune the photoelectrochemical response and photoconversion efficiency via size control of CdSe quantum dots and improvement in the photoconversions efficiency by facilitating the charge transport through TiO2 nanotube architecture.
Related Papers (5)