scispace - formally typeset
Open AccessJournal ArticleDOI

Increased Ir–Ir Interaction in Iridium Oxide during the Oxygen Evolution Reaction at High Potentials Probed by Operando Spectroscopy

TLDR
In this article, the structure of IrO$2}$ during the oxygen evolution reaction (OER) was studied by operando X-ray absorption spectroscopy (XAS) at the Ir L$3}$-edge to gain insight into the processes that occur during the electrocatalytic reaction at the anode during water electrolysis.
Abstract
The structure of IrO$_{2}$ during the oxygen evolution reaction (OER) was studied by operando X-ray absorption spectroscopy (XAS) at the Ir L$_{3}$-edge to gain insight into the processes that occur during the electrocatalytic reaction at the anode during water electrolysis. For this purpose, calcined and uncalcined IrO$_{2}$ nanoparticles were tested in an operando spectroelectrochemical cell. In situ XAS under different applied potentials uncovered strong structural changes when changing the potential. Modulation excitation spectroscopy combined with XAS enhanced the information on the dynamic changes significantly. Principal component analysis (PCA) of the resulting spectra as well as FEFF9 calculations uncovered that both the Ir L$_{3}$-edge energy and the white line intensity changed due to the formation of oxygen vacancies and lower oxidation state of iridium at higher potentials, respectively. The deconvoluted spectra and their components lead to two different OER modes. It was observed that at higher OER potentials, the well-known OER mechanisms need to be modified, which is also associated with the stabilization of the catalyst, as confirmed by in situ inductively coupled plasma mass spectrometry (ICP-MS). At these elevated OER potentials above 1.5 V, stronger Ir–Ir interactions were observed. They were more dominant in the calcined IrO$_{2}$ samples than in the uncalcined ones. The stronger Ir–Ir interaction upon vacancy formation is also supported by theoretical studies. We propose that this may be a crucial factor in the increased dissolution stability of the IrO$_{2}$ catalyst after calcination. The results presented here provide additional insights into the OER in acid media and demonstrate a powerful technique for quantifying the differences in mechanisms on different OER electrocatalysts. Furthermore, insights into the OER at a fundamental level are provided, which will contribute to further understanding of the reaction mechanisms in water electrolysis.

read more

Citations
More filters
Journal ArticleDOI

Inter‐relationships between Oxygen Evolution and Iridium Dissolution Mechanisms

TL;DR: In this paper , the state-of-the-art understanding of dissolution and its relationship with the structure of different iridium catalysts is gathered and correlated to different mechanisms of the OER.
Journal ArticleDOI

Cation Defect Engineering of Transition Metal Electrocatalysts for Oxygen Evolution Reaction

TL;DR: In this article , the main focus is on the cation vacancy defects of transition metal-based electrocatalysts; the latest progress in defect engineering for the Electrocatalytic OER is summarized.
References
More filters
Journal ArticleDOI

A comprehensive review on PEM water electrolysis

TL;DR: In this paper, a review of the state-of-the-art for PEM electrolysis technology is presented, which provides an insightful overview of the research that is already done and the challenges that still exist.
Journal ArticleDOI

XSEDE: Accelerating Scientific Discovery

TL;DR: XSEDE's integrated, comprehensive suite of advanced digital services federates with other high-end facilities and with campus-based resources, serving as the foundation for a national e-science infrastructure ecosystem.
Journal ArticleDOI

Electrolysis of water on oxide surfaces

TL;DR: In this paper, density functional theory (DFT) calculations are performed to analyze the electrochemical water-splitting process producing molecular oxygen (O 2 ) and hydrogen (H 2 ).
Journal ArticleDOI

Oxygen electrochemistry as a cornerstone for sustainable energy conversion

TL;DR: A promising strategy to develop such an understanding is the investigation of the impact of material properties on reaction activity/selectivity and on catalyst stability under the conditions of operation, as well as the application of complementary in situ techniques for the Investigation of catalyst structure and composition.
Related Papers (5)