scispace - formally typeset
Proceedings ArticleDOI

Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images

TLDR
In this paper, the user marks certain pixels as "object" or "background" to provide hard constraints for segmentation, and additional soft constraints incorporate both boundary and region information.
Abstract
In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as "object" or "background" to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph cuts are used to find the globally optimal segmentation of the N-dimensional image. The obtained solution gives the best balance of boundary and region properties among all segmentations satisfying the constraints. The topology of our segmentation is unrestricted and both "object" and "background" segments may consist of several isolated parts. Some experimental results are presented in the context of photo/video editing and medical image segmentation. We also demonstrate an interesting Gestalt example. A fast implementation of our segmentation method is possible via a new max-flow algorithm.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

SLIC Superpixels Compared to State-of-the-Art Superpixel Methods

TL;DR: A new superpixel algorithm is introduced, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels and is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.
Journal ArticleDOI

"GrabCut": interactive foreground extraction using iterated graph cuts

TL;DR: A more powerful, iterative version of the optimisation of the graph-cut approach is developed and the power of the iterative algorithm is used to simplify substantially the user interaction needed for a given quality of result.
Journal ArticleDOI

Contour Detection and Hierarchical Image Segmentation

TL;DR: This paper investigates two fundamental problems in computer vision: contour detection and image segmentation and presents state-of-the-art algorithms for both of these tasks.
Proceedings Article

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

TL;DR: In this paper, the gradient of the class score with respect to the input image is computed to compute a class saliency map, which can be used for weakly supervised object segmentation using classification ConvNets.
Journal ArticleDOI

An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision

TL;DR: This paper compares the running times of several standard algorithms, as well as a new algorithm that is recently developed that works several times faster than any of the other methods, making near real-time performance possible.
References
More filters
Journal ArticleDOI

Snakes : Active Contour Models

TL;DR: This work uses snakes for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest, and uses scale-space continuation to enlarge the capture region surrounding a feature.
Journal ArticleDOI

Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations

TL;DR: The PSC algorithm as mentioned in this paper approximates the Hamilton-Jacobi equations with parabolic right-hand-sides by using techniques from the hyperbolic conservation laws, which can be used also for more general surface motion problems.
Proceedings ArticleDOI

Normalized cuts and image segmentation

TL;DR: This work treats image segmentation as a graph partitioning problem and proposes a novel global criterion, the normalized cut, for segmenting the graph, which measures both the total dissimilarity between the different groups as well as the total similarity within the groups.
Journal ArticleDOI

An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision

TL;DR: This paper compares the running times of several standard algorithms, as well as a new algorithm that is recently developed that works several times faster than any of the other methods, making near real-time performance possible.
Book

Flows in networks

TL;DR: Ford and Fulkerson as mentioned in this paper set the foundation for the study of network flow problems and developed powerful computational tools for solving and analyzing network flow models, and also furthered the understanding of linear programming.
Related Papers (5)