scispace - formally typeset
Journal ArticleDOI

Interface engineering of highly efficient perovskite solar cells

TLDR
Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract
Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

read more

Citations
More filters
Journal ArticleDOI

Ligand-Stabilized Reduced-Dimensionality Perovskites

TL;DR: Reduced-dimensionality (quasi-2D) perovskite films are reported that exhibit improved stability while retaining the high performance of conventional three-dimensionalperovskites, and are achieved by the choice of stoichiometry in materials synthesis.
Journal ArticleDOI

Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency

TL;DR: In this paper, an inverted MAPbI3 planar hybrid solar cells with 18.1% average power conversion efficiency was fabricated by depositing dense pinhole-free MAPBI3 perovskite on a PEDOT:PSS/ITO substrate via a single-step spin-coating of solubility controlled MAPI3 solution.
Journal ArticleDOI

Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells.

TL;DR: This paper identifies thermal stability as a fundamental weak point of perovskite solar cells, and demonstrates an elegant approach to mitigating thermal degradation by replacing the organic hole transport material with polymer-functionalized single-walled carbon nanotubes (SWNTs) embedded in an insulating polymer matrix.
Journal ArticleDOI

Imperfections and their passivation in halide perovskite solar cells

TL;DR: The recent advances in passivation of imperfections and suppressing ion migration to achieve improved efficiency and highly stable perovskite solar cells are reviewed.
Journal ArticleDOI

Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells

TL;DR: In this paper, the optoelectronic properties of mixed A-cation perovskites and the underlying reasons for their excellent performance and high stability were analyzed using first principle computations.
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Sequential deposition as a route to high-performance perovskite-sensitized solar cells

TL;DR: A sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film that greatly increases the reproducibility of their performance and allows the fabrication of solid-state mesoscopic solar cells with unprecedented power conversion efficiencies and high stability.
Journal ArticleDOI

Efficient planar heterojunction perovskite solar cells by vapour deposition

TL;DR: It is shown that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.
Related Papers (5)