scispace - formally typeset
Journal ArticleDOI

Interface engineering of highly efficient perovskite solar cells

TLDR
Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract
Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

read more

Citations
More filters
Journal ArticleDOI

Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut

TL;DR: The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
Journal ArticleDOI

Compositional engineering of perovskite materials for high-performance solar cells

TL;DR: This work combines the promising—but relatively unstable formamidinium lead iodide with FAPbI3 with methylammonium lead bromide as the light-harvesting unit in a bilayer solar-cell architecture and improves the power conversion efficiency of the solar cell to more than 18 per cent under a standard illumination.
Journal ArticleDOI

Surface passivation of perovskite film for efficient solar cells

TL;DR: In this paper, an organic halide salt phenethylammonium iodide (PEAI) was used on HC(NH2)2-CH3NH3 mixed perovskite films for surface defect passivation.
Journal ArticleDOI

High-efficiency solution-processed perovskite solar cells with millimeter-scale grains

TL;DR: A solution-based hot-casting technique is demonstrated to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains that are applicable to several other material systems plagued by polydispersity, defects, and grain boundary recombination in solution-processed thin films.
Journal ArticleDOI

Metal-halide perovskites for photovoltaic and light-emitting devices

TL;DR: The broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and the properties that have delivered light-emitting diodes and lasers are described.
References
More filters
Journal ArticleDOI

High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers

TL;DR: The C60SAM functionalization of mesoporous TiO2 is used to achieve an 11.7% perovskite-sensitized solar cell using Spiro-OMeTAD as a transparent hole transporter and this strategy allows a reduction of energy loss, while still employing a "mesoporous electron acceptor".
Journal ArticleDOI

Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency

TL;DR: In this article, a low temperature route for compact TiO2, tailored for perovskite MSSC operation, was realized, and the optimized formulation was shown to achieve full sun solar power conversion efficiencies of up to 15.9% in an all low temperature processed solar cell.
Journal ArticleDOI

Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles.

TL;DR: This work demonstrates photocurrent and efficiency enhancement in meso-superstructured organometal halide perovskite solar cells incorporating core-shell Au@SiO2 nanoparticles (NPs) delivering a device efficiency of up to 11.4%.
Journal ArticleDOI

Efficient Inorganic Organic Hybrid Perovskite Solar Cells Based on Pyrene Arylamine Derivatives as Hole-Transporting Materials

TL;DR: This newly synthesized pyrene derivative holds promise as a HTM for highly efficient perovskite-based solar cells, comparable to that of the well-studied spiro-OMeTAD.
Related Papers (5)