scispace - formally typeset
Journal ArticleDOI

Interfacial turbulence: Hydrodynamic instability and the marangoni effect

C.V. Sternling, +1 more
- 01 Dec 1959 - 
- Vol. 5, Iss: 4, pp 514-523
TLDR
In this article, a simplified mathematical model has been analyzed in order to detail the mechanism of the "interfacial engine" which supplies the mechanical energy of interfacial turbulence, which is a manifestation of hydrodynamic instability, touched off by ever present, small, random fluctuations about the interface.
Abstract
The origin of interfacial turbulence, spontaneous agitation of the interface between two unequilibrated liquids, has been explained in terms of classical flow, diffusion, and surface processes. The essence of the explanation is the long-known though much neglected Marangoni effect, wherein movement in an interface is caused by longitudinal variations of interfacial tension. It is proposed that interfacial turbulence is a manifestation of hydrodynamic instability, which is touched off by ever present, small, random fluctuations about the interface. A simplified mathematical model has been analyzed in order to detail the mechanism of the “interfacial engine” which supplies the mechanical energy of interfacial turbulence. In its present form the analysis incorporates several drastic simplifications, though ways of removing some of these have been suggested. The groundwork has been laid for the more elaborate analyses that are needed for a decisive test of the theory. The analysis shows how some systems may be stable with solute transfer in one direction yet unstable with transfer in the opposite direction, a striking result. It also suggests that interfacial turbulence is usually promoted by (1) solute transfer out of the phase of higher viscosity, (2) solute transfer out of the phase in which its diffusivity is lower, (3) large differences in kinematic viscosity and solute diffusivity between the two phases, (4) steep concentration gradients near the interface, (5) interfacial tension highly sensitive to solute concentration, (6) low viscosities and diffusivities in both phases, (7) absence of surface-active agents, and (8) interfaces of large extent. That some of these effects have been observed in the laboratory lends credence to the theory.

read more

Citations
More filters
Journal ArticleDOI

On evaporation dynamics of an acoustically levitated multicomponent droplet: Evaporation-triggered phase transition and freezing.

TL;DR: In this paper , a ternary mixture system containing hexadecane, ethanol, and diethyl ether was investigated using acoustic levitation technique to achieve a contactless evaporation condition.
Journal ArticleDOI

Two-component Bénard convection: Interfacial deformation, oscillatory instabilities and the onset of turbulence

TL;DR: In this paper, it has been shown that mere ppm impurity concentration can play a drastic role in the stability of fluid layers subjected to thermal gradients and that the impurity cooperates or competes according to the sign of its migration in the thermal fields with the interfacial deformation thus leading to convective flows.
Book ChapterDOI

Sustainability in Drug and Nanoparticle Processing.

TL;DR: In this paper , the status quo of green, sustainable, and alternative solvents regarding their application, advantages, and limitations is highlighted as well as the role of physicochemical solvent characteristics like water miscibility, viscosity, and vapor pressure for the selection of the formulation process, and for particle characteristics.
Related Papers (5)