scispace - formally typeset
Journal ArticleDOI

Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells.

TLDR
In this paper, a microporous carbon-supported iron-based catalysts with active sites believed to contain iron cations coordinated by pyridinic nitrogen functionalities in the interstices of graphitic sheets within the micropores was produced.
Abstract
Iron-based catalysts for the oxygen-reduction reaction in polymer electrolyte membrane fuel cells have been poorly competitive with platinum catalysts, in part because they have a comparatively low number of active sites per unit volume. We produced microporous carbon-supported iron-based catalysts with active sites believed to contain iron cations coordinated by pyridinic nitrogen functionalities in the interstices of graphitic sheets within the micropores. We found that the greatest increase in site density was obtained when a mixture of carbon support, phenanthroline, and ferrous acetate was ball-milled and then pyrolyzed twice, first in argon, then in ammonia. The current density of a cathode made with the best iron-based electrocatalyst reported here can equal that of a platinum-based cathode with a loading of 0.4 milligram of platinum per square centimeter at a cell voltage of >/=0.9 volt.

read more

Citations
More filters
Journal ArticleDOI

Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction

TL;DR: The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER.
Journal ArticleDOI

Electrocatalyst approaches and challenges for automotive fuel cells

Mark K. Debe
- 07 Jun 2012 - 
TL;DR: Taking the step towards successful commercialization requires oxygen reduction electrocatalysts that meet exacting performance targets, and these catalyst systems will need to be highly durable, fault-tolerant and amenable to high-volume production with high yields and exceptional quality.
Journal ArticleDOI

Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions

TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Journal ArticleDOI

Recent Advances in Ultrathin Two-Dimensional Nanomaterials

TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Journal ArticleDOI

High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt

TL;DR: A family of non–precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power.
References
More filters
Journal ArticleDOI

Fuel Cell Studies on a Non-Noble Metal Catalyst Prepared by a Template-Assisted Synthesis Route

TL;DR: In this article, the catalytic activity of a templated catalyst material (Fe-N-C), prepared using FeCl 3, pyrrole, and a mesoporous silica gel as template, was investigated.
Journal ArticleDOI

Application of nitrogen-rich amino acids to active site generation in oxygen reduction catalyst

TL;DR: In this article, the carbon-based noble-metal-free PEFC cathode catalyst was formed using amino acids containing more than one nitrogen atom in the molecule as the nitrogen source in order to obtain fundamental information on the efficient formation of the active site and the activity enhancement.
Journal ArticleDOI

Effect of Preparation Conditions of Sol–Gel-Derived Co–N–C-Based Catalysts on ORR Activity in Acidic Solutions

TL;DR: In this article, a Co oxide ethanol-based sol as a precursor solution, nitrogen (N)- and carbon (C)-containing ligands [1,2 phenylene diamine (phen) and ethylene diamines (en)] were added to produce an oxygen reduction reaction (ORR) catalyst precursor.
Related Papers (5)