scispace - formally typeset
Journal ArticleDOI

Electrocatalyst approaches and challenges for automotive fuel cells

Mark K. Debe
- 07 Jun 2012 - 
- Vol. 486, Iss: 7401, pp 43-51
TLDR
Taking the step towards successful commercialization requires oxygen reduction electrocatalysts that meet exacting performance targets, and these catalyst systems will need to be highly durable, fault-tolerant and amenable to high-volume production with high yields and exceptional quality.
Abstract
Fuel cells powered by hydrogen from secure and renewable sources are the ideal solution for non-polluting vehicles, and extensive research and development on all aspects of this technology over the past fifteen years has delivered prototype cars with impressive performances. But taking the step towards successful commercialization requires oxygen reduction electrocatalysts--crucial components at the heart of fuel cells--that meet exacting performance targets. In addition, these catalyst systems will need to be highly durable, fault-tolerant and amenable to high-volume production with high yields and exceptional quality. Not all the catalyst approaches currently being pursued will meet those demands.

read more

Citations
More filters
Journal ArticleDOI

Opportunities and challenges for a sustainable energy future

TL;DR: This Perspective provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.
Journal ArticleDOI

Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions

TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Journal ArticleDOI

Recent Advances in Electrocatalysts for Oxygen Reduction Reaction

TL;DR: This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core-shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts and metal-free catalysts.
Journal ArticleDOI

A metal–organic framework-derived bifunctional oxygen electrocatalyst

TL;DR: In this paper, a general approach for the synthesis of hollow frameworks of nitrogen-doped carbon nanotubes derived from metal-organic frameworks, which exhibit higher electrocatalytic activity and stability for oxygen reduction and evolution than commercial Pt/C catalysts, is presented.
Journal ArticleDOI

Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts

TL;DR: A new class of Pt-Co nanocatalysts composed of ordered Pt(3)Co intermetallic cores with a 2-3 atomic-layer-thick platinum shell with high activity and stability are described, providing a new direction for catalyst performance optimization for next-generation fuel cells.
References
More filters
Journal ArticleDOI

Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs

TL;DR: In this article, the authors quantified the activities and voltage loss modes for state-of-the-art MEAs (membrane electrode assemblies), specifies performance goals needed for automotive application, and provides benchmark oxygen reduction activities for state of the art platinum electrocatalysts.
Journal ArticleDOI

Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability

TL;DR: It is demonstrated that the Pt3Ni( 111) surface is 10-fold more active for the ORR than the corresponding Pt(111) surface and 90-foldMore active than the current state-of-the-art Pt/C catalysts for PEMFC.
Journal ArticleDOI

High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt

TL;DR: A family of non–precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power.
Journal ArticleDOI

Towards the computational design of solid catalysts

TL;DR: The first steps towards using computational methods to design new catalysts are reviewed and how, in the future, such methods may be used to engineer the electronic structure of the active surface by changing its composition and structure are discussed.
Journal Article

High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt

TL;DR: In this article, a family of non-precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power.
Related Papers (5)