scispace - formally typeset
Open AccessProceedings ArticleDOI

Learning from Noisy Labels with Distillation

TLDR
This work proposes a unified distillation framework to use “side” information, including a small clean dataset and label relations in knowledge graph, to “hedge the risk” of learning from noisy labels, and proposes a suite of new benchmark datasets to evaluate this task in Sports, Species and Artifacts domains.
Abstract
The ability of learning from noisy labels is very useful in many visual recognition tasks, as a vast amount of data with noisy labels are relatively easy to obtain. Traditionally, label noise has been treated as statistical outliers, and techniques such as importance re-weighting and bootstrapping have been proposed to alleviate the problem. According to our observation, the real-world noisy labels exhibit multimode characteristics as the true labels, rather than behaving like independent random outliers. In this work, we propose a unified distillation framework to use “side” information, including a small clean dataset and label relations in knowledge graph, to “hedge the risk” of learning from noisy labels. Unlike the traditional approaches evaluated based on simulated label noises, we propose a suite of new benchmark datasets, in Sports, Species and Artifacts domains, to evaluate the task of learning from noisy labels in the practical setting. The empirical study demonstrates the effectiveness of our proposed method in all the domains.

read more

Citations
More filters
Proceedings ArticleDOI

Similarity-Preserving Knowledge Distillation

TL;DR: This paper proposes a new form of knowledge distillation loss that is inspired by the observation that semantically similar inputs tend to elicit similar activation patterns in a trained network.
Posted Content

Learning to Reweight Examples for Robust Deep Learning

TL;DR: This work proposes a novel meta-learning algorithm that learns to assign weights to training examples based on their gradient directions that can be easily implemented on any type of deep network, does not require any additional hyperparameter tuning, and achieves impressive performance on class imbalance and corrupted label problems where only a small amount of clean validation data is available.
Proceedings ArticleDOI

Symmetric Cross Entropy for Robust Learning With Noisy Labels

TL;DR: The proposed Symmetric cross entropy Learning (SL) approach simultaneously addresses both the under learning and overfitting problem of CE in the presence of noisy labels, and empirically shows that SL outperforms state-of-the-art methods.
Posted Content

Learning from Noisy Labels with Deep Neural Networks: A Survey

TL;DR: A comprehensive review of 62 state-of-the-art robust training methods, all of which are categorized into five groups according to their methodological difference, followed by a systematic comparison of six properties used to evaluate their superiority.
Proceedings Article

DivideMix: Learning with Noisy Labels as Semi-supervised Learning

TL;DR: DivideMix as mentioned in this paper models the per-sample loss distribution with a mixture model to dynamically divide the training data into clean samples and noisy samples, and trains the model on both the labeled and unlabeled data in a semi-supervised manner.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Proceedings ArticleDOI

Rethinking the Inception Architecture for Computer Vision

TL;DR: In this article, the authors explore ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization.
Posted Content

Distilling the Knowledge in a Neural Network

TL;DR: This work shows that it can significantly improve the acoustic model of a heavily used commercial system by distilling the knowledge in an ensemble of models into a single model and introduces a new type of ensemble composed of one or more full models and many specialist models which learn to distinguish fine-grained classes that the full models confuse.
Journal ArticleDOI

BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network

TL;DR: An automatic approach to the construction of BabelNet, a very large, wide-coverage multilingual semantic network, key to this approach is the integration of lexicographic and encyclopedic knowledge from WordNet and Wikipedia.
Related Papers (5)