scispace - formally typeset
Open AccessJournal ArticleDOI

Learning phase transitions by confusion

Evert van Nieuwenburg, +2 more
- 01 May 2017 - 
- Vol. 13, Iss: 5, pp 435-439
TLDR
In this article, a neural-network approach is proposed to find phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly.
Abstract
A neural-network technique can exploit the power of machine learning to mine the exponentially large data sets characterizing the state space of condensed-matter systems. Topological transitions and many-body localization are first on the list. Classifying phases of matter is key to our understanding of many problems in physics. For quantum-mechanical systems in particular, the task can be daunting due to the exponentially large Hilbert space. With modern computing power and access to ever-larger data sets, classification problems are now routinely solved using machine-learning techniques1. Here, we propose a neural-network approach to finding phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly. We demonstrate the success of this method on the topological phase transition in the Kitaev chain2, the thermal phase transition in the classical Ising model3, and the many-body-localization transition in a disordered quantum spin chain4. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to the development of a generic tool for identifying unexplored phase transitions.

read more

Citations
More filters
Journal ArticleDOI

Machine learning and the physical sciences

TL;DR: This article reviews in a selective way the recent research on the interface between machine learning and the physical sciences, including conceptual developments in ML motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross fertilization between the two fields.
Journal ArticleDOI

Machine learning phases of matter

TL;DR: It is shown that modern machine learning architectures, such as fully connected and convolutional neural networks, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians.
Journal ArticleDOI

Machine learning & artificial intelligence in the quantum domain: a review of recent progress.

TL;DR: In this article, the authors describe the main ideas, recent developments and progress in a broad spectrum of research investigating ML and AI in the quantum domain, and discuss the fundamental issue of quantum generalizations of learning and AI concepts.
Journal ArticleDOI

A high-bias, low-variance introduction to Machine Learning for physicists

TL;DR: The review begins by covering fundamental concepts in ML and modern statistics such as the bias-variance tradeoff, overfitting, regularization, generalization, and gradient descent before moving on to more advanced topics in both supervised and unsupervised learning.
References
More filters
Book

Neural Networks: A Comprehensive Foundation

Simon Haykin
TL;DR: Thorough, well-organized, and completely up to date, this book examines all the important aspects of this emerging technology, including the learning process, back-propagation learning, radial-basis function networks, self-organizing systems, modular networks, temporal processing and neurodynamics, and VLSI implementation of neural networks.
Journal ArticleDOI

LIII. On lines and planes of closest fit to systems of points in space

TL;DR: This paper is concerned with the construction of planes of closest fit to systems of points in space and the relationships between these planes and the planes themselves.
Journal ArticleDOI

Crystal statistics. I. A two-dimensional model with an order-disorder transition

TL;DR: In this article, the eigenwert problem involved in the corresponding computation for a long strip crystal of finite width, joined straight to itself around a cylinder, is solved by direct product decomposition; in the special case $n=\ensuremath{\infty}$ an integral replaces a sum.
Journal ArticleDOI

Machine learning: Trends, perspectives, and prospects

TL;DR: The adoption of data-intensive machine-learning methods can be found throughout science, technology and commerce, leading to more evidence-based decision-making across many walks of life, including health care, manufacturing, education, financial modeling, policing, and marketing.
Journal ArticleDOI

Unpaired Majorana fermions in quantum wires

TL;DR: In this article, a condition for boundary Majorana fermions is expressed as a condition on the bulk electron spectrum, which is satisfied in the presence of an arbitrary small energy gap induced by proximity of a 3D p-wave superconductor.
Related Papers (5)