scispace - formally typeset
Open AccessPosted Content

Learning to Communicate with Deep Multi-Agent Reinforcement Learning

TLDR
By embracing deep neural networks, this work is able to demonstrate end-to-end learning of protocols in complex environments inspired by communication riddles and multi-agent computer vision problems with partial observability.
Abstract
We consider the problem of multiple agents sensing and acting in environments with the goal of maximising their shared utility. In these environments, agents must learn communication protocols in order to share information that is needed to solve the tasks. By embracing deep neural networks, we are able to demonstrate end-to-end learning of protocols in complex environments inspired by communication riddles and multi-agent computer vision problems with partial observability. We propose two approaches for learning in these domains: Reinforced Inter-Agent Learning (RIAL) and Differentiable Inter-Agent Learning (DIAL). The former uses deep Q-learning, while the latter exploits the fact that, during learning, agents can backpropagate error derivatives through (noisy) communication channels. Hence, this approach uses centralised learning but decentralised execution. Our experiments introduce new environments for studying the learning of communication protocols and present a set of engineering innovations that are essential for success in these domains.

read more

Citations
More filters
Journal ArticleDOI

A brief survey of deep reinforcement learning

TL;DR: This survey will cover central algorithms in deep RL, including the deep Q-network (DQN), trust region policy optimization (TRPO), and asynchronous advantage actor critic, and highlight the unique advantages of deep neural networks, focusing on visual understanding via RL.
Posted Content

Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments

TL;DR: An adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination is presented.
Proceedings Article

Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments

TL;DR: In this article, an actor-critic method was used to learn multi-agent coordination policies in cooperative and competitive multi-player RL games, where agent populations are able to discover various physical and informational coordination strategies.
Proceedings ArticleDOI

Sim-to-Real Transfer of Robotic Control with Dynamics Randomization

TL;DR: In this article, the authors demonstrate a simple method to bridge the "reality gap" by randomizing the dynamics of the simulator during training and develop policies that are capable of adapting to very different dynamics, including ones that differ significantly from the dynamics on which the policies were trained.
References
More filters
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Posted Content

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Batch Normalization as mentioned in this paper normalizes layer inputs for each training mini-batch to reduce the internal covariate shift in deep neural networks, and achieves state-of-the-art performance on ImageNet.
Related Papers (5)