Likelihood Ascent Search Detection for Coded Massive MU-MIMO Systems to Mitigate IAI and MUI
01 May 2020-Radioelectronics and Communications Systems (Pleiades Publishing)-Vol. 63, Iss: 5, pp 223-234
...read more
Citations
More filters
[...]
1 citations
[...]
TL;DR: The lattice reduction (LR) precoding based user level local likelihood ascent search (ULAS) detection scheme is proposed in this paper for efficient signal detection in large scale MU-MIMO system.
Abstract: The large scale multiuser multiple input multiple output (MU-MIMO) is one of the promising communication technology for 5G wireless networks as it offers reliability, high spectral efficiency and high throughput. The lattice reduction (LR) precoding based user level local likelihood ascent search (ULAS) detection scheme is proposed in this paper for efficient signal detection in large scale MU-MIMO system. The initial solution of ULAS algorithm is obtained from the LR precoding assisted zero forcing detector. The LR precoding transforms the non-orthogonal channel matrix into nearly orthogonal channel, which helps to mitigate inter antenna interference (IAI) exists at each user. The remaining multiuser interference (MUI) imposed to each user from undesired users is cancelled by the proposed ULAS multiuser detection scheme. Thus, the proposed LR precoding assisted ULAS mitigates both IAI and MUI unlike the classical detector, those try to moderate either IAI or MUI. By contrast, the proposed ULAS detector provides performance close to optimal maximum likelihood detector with just a fraction of its complexity.
References
More filters
[...]
TL;DR: While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios.
Abstract: Multi-user MIMO offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned, with roughly equal numbers of service antennas and terminals and frequency-division duplex operation, is not a scalable technology. Massive MIMO (also known as large-scale antenna systems, very large MIMO, hyper MIMO, full-dimension MIMO, and ARGOS) makes a clean break with current practice through the use of a large excess of service antennas over active terminals and time-division duplex operation. Extra antennas help by focusing energy into ever smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include extensive use of inexpensive low-power components, reduced latency, simplification of the MAC layer, and robustness against intentional jamming. The anticipated throughput depends on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This article presents an overview of the massive MIMO concept and contemporary research on the topic.
5,302 citations
[...]
TL;DR: This paper addresses the potential impact of pilot contamination caused by the use of non-orthogonal pilot sequences by users in adjacent cells, and analyzes the energy efficiency and degrees of freedom provided by massive MIMO systems to enable efficient single-carrier transmission.
Abstract: Massive multiple-input multiple-output (MIMO) wireless communications refers to the idea equipping cellular base stations (BSs) with a very large number of antennas, and has been shown to potentially allow for orders of magnitude improvement in spectral and energy efficiency using relatively simple (linear) processing. In this paper, we present a comprehensive overview of state-of-the-art research on the topic, which has recently attracted considerable attention. We begin with an information theoretic analysis to illustrate the conjectured advantages of massive MIMO, and then we address implementation issues related to channel estimation, detection and precoding schemes. We particularly focus on the potential impact of pilot contamination caused by the use of non-orthogonal pilot sequences by users in adjacent cells. We also analyze the energy efficiency achieved by massive MIMO systems, and demonstrate how the degrees of freedom provided by massive MIMO systems enable efficient single-carrier transmission. Finally, the challenges and opportunities associated with implementing massive MIMO in future wireless communications systems are discussed.
1,589 citations
Book•
[...]
TL;DR: In this article, a detailed introduction to the analysis and design of multiple-input multiple-output (MIMO) wireless systems is presented, and the fundamental capacity limits of MIMO systems are examined.
Abstract: Multiple-input multiple-output (MIMO) technology constitutes a breakthrough in the design of wireless communications systems, and is already at the core of several wireless standards. Exploiting multipath scattering, MIMO techniques deliver significant performance enhancements in terms of data transmission rate and interference reduction. This book is a detailed introduction to the analysis and design of MIMO wireless systems. Beginning with an overview of MIMO technology, the authors then examine the fundamental capacity limits of MIMO systems. Transmitter design, including precoding and space-time coding, is then treated in depth, and the book closes with two chapters devoted to receiver design. Written by a team of leading experts, the book blends theoretical analysis with physical insights, and highlights a range of key design challenges. It can be used as a textbook for advanced courses on wireless communications, and will also appeal to researchers and practitioners working on MIMO wireless systems.
683 citations
[...]
TL;DR: A low-complexity detector which achieves uncoded near-exponential diversity performance for hundreds of antennas with an average per-bit complexity of just O(NtNr), where Nt and Nr denote the number of transmit and receive antennas, respectively is presented.
Abstract: We consider large MIMO systems, where by 'large' we mean number of transmit and receive antennas of the order of tens to hundreds. Such large MIMO systems will be of immense interest because of the very high spectral efficiencies possible in such systems. We present a low-complexity detector which achieves uncoded near-exponential diversity performance for hundreds of antennas (i.e., achieves near SISO AWGN performance in a large MIMO fading environment) with an average per-bit complexity of just O(NtNr), where Nt and Nr denote the number of transmit and receive antennas, respectively. With an outer turbo code, the proposed detector achieves good coded bit error performance as well. For example, in a 600 transmit and 600 receive antennas V-BLAST system with a high spectral efficiency of 450 bps/Hz (using BPSK and rate-3/4 turbo code), our simulation results show that the proposed detector performs to within about 7 dB from capacity. This practical feasibility of the proposed high-performance, low-complexity detector could potentially trigger wide interest in the theory and implementation of large MIMO systems. We also illustrate the applicability of the proposed detector in the low-complexity detection of high-rate, non-orthogonal space-time block codes and large multicarrier CDMA (MC-CDMA) systems. In large MC-CDMA systems with hundreds of users, the proposed detector is shown to achieve near single-user performance at an average per-bit complexity linear in number of users, which is quite appealing for its use in practical CDMA systems.
267 citations
[...]
TL;DR: There is in-depth coverage of algorithms for large MIMO signal processing, based on meta-heuristics, belief propagation and Monte Carlo sampling techniques, and suited for large-scale signal detection, precoding and LDPC code designs.
Abstract: Large MIMO systems, with tens to hundreds of antennas, are a promising emerging communication technology This book provides a unique overview of this technology, covering the opportunities, engineering challenges, solutions and state of the art of large MIMO test beds There is in-depth coverage of algorithms for large MIMO signal processing, based on meta-heuristics, belief propagation and Monte Carlo sampling techniques, and suited for large MIMO signal detection, precoding and LDPC code designs The book also covers the training requirement and channel estimation approaches in large-scale point-to-point and multi-user MIMO systems; spatial modulation is also included Issues like pilot contamination and base station cooperation in multi-cell operation are addressed A detailed exposition of MIMO channel models, large MIMO channel sounding measurements in the past and present, and large MIMO test beds is also presented An ideal resource for academic researchers, next generation wireless system designers and developers, and practitioners in wireless communications
162 citations
Related Papers (5)
[...]
[...]