scispace - formally typeset
Journal ArticleDOI

Linear Regression for Face Recognition

TLDR
A novel approach of face identification by formulating the pattern recognition problem in terms of linear regression, using a fundamental concept that patterns from a single-object class lie on a linear subspace, and introducing a novel Distance-based Evidence Fusion (DEF) algorithm.
Abstract
In this paper, we present a novel approach of face identification by formulating the pattern recognition problem in terms of linear regression. Using a fundamental concept that patterns from a single-object class lie on a linear subspace, we develop a linear model representing a probe image as a linear combination of class-specific galleries. The inverse problem is solved using the least-squares method and the decision is ruled in favor of the class with the minimum reconstruction error. The proposed Linear Regression Classification (LRC) algorithm falls in the category of nearest subspace classification. The algorithm is extensively evaluated on several standard databases under a number of exemplary evaluation protocols reported in the face recognition literature. A comparative study with state-of-the-art algorithms clearly reflects the efficacy of the proposed approach. For the problem of contiguous occlusion, we propose a Modular LRC approach, introducing a novel Distance-based Evidence Fusion (DEF) algorithm. The proposed methodology achieves the best results ever reported for the challenging problem of scarf occlusion.

read more

Citations
More filters
Proceedings ArticleDOI

Sparse representation or collaborative representation: Which helps face recognition?

TL;DR: This paper indicates that it is the CR but not the l1-norm sparsity that makes SRC powerful for face classification, and proposes a very simple yet much more efficient face classification scheme, namely CR based classification with regularized least square (CRC_RLS).
Journal ArticleDOI

A Survey of Sparse Representation: Algorithms and Applications

TL;DR: A comprehensive overview of sparse representation is provided and an experimentally comparative study of these sparse representation algorithms was presented, which could sufficiently reveal the potential nature of the sparse representation theory.
Journal ArticleDOI

Maximum Correntropy Criterion for Robust Face Recognition

TL;DR: The proposed sparse correntropy framework is more robust and efficient in dealing with the occlusion and corruption problems in face recognition as compared to the related state-of-the-art methods and the computational cost is much lower than the SRC algorithms.
Journal ArticleDOI

A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic

TL;DR: A hybrid model using deep and classical machine learning for face mask detection will be presented, and the SVM classifier achieved 99.64 % testing accuracy in RMFD.
Posted Content

Sparse Modeling for Image and Vision Processing

TL;DR: In this article, a self-contained view of sparse modeling for visual recognition and image processing is presented, where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.
References
More filters
Book

The Elements of Statistical Learning: Data Mining, Inference, and Prediction

TL;DR: In this paper, the authors describe the important ideas in these areas in a common conceptual framework, and the emphasis is on concepts rather than mathematics, with a liberal use of color graphics.
Book

Principal Component Analysis

TL;DR: In this article, the authors present a graphical representation of data using Principal Component Analysis (PCA) for time series and other non-independent data, as well as a generalization and adaptation of principal component analysis.
Journal ArticleDOI

Eigenfaces for recognition

TL;DR: A near-real-time computer system that can locate and track a subject's head, and then recognize the person by comparing characteristics of the face to those of known individuals, and that is easy to implement using a neural network architecture.
Journal ArticleDOI

Eigenfaces vs. Fisherfaces: recognition using class specific linear projection

TL;DR: A face recognition algorithm which is insensitive to large variation in lighting direction and facial expression is developed, based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variations in lighting and facial expressions.
Related Papers (5)