scispace - formally typeset
Open AccessJournal ArticleDOI

Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes

Reads0
Chats0
TLDR
In-situ transmission electron microscopy and continuum media mechanical calculations are combined to demonstrate that large (>20 μm) mesoporous silicon sponge prepared by the anodization method can limit the particle volume expansion at full lithiation to ~30% and prevent pulverization in bulk silicon particles.
Abstract
Silicon is a promising anode material for lithium ion batteries, but suffers from poor cyclability especially at high mass loading. Here, Li et al. synthesize mesoporous silicon sponge-like structures, which show promising performance at the deep lithiation and high loading conditions required for practical applications.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Silicon based lithium-ion battery anodes: A chronicle perspective review

TL;DR: In this paper, the evolution of the concept, fundamental scientific and technology development of the silicon LIB anode are clearly presented, and the future trend of the Si-based anode research is shed light on the future trends.

Three-Dimensional Holey-Graphene/Niobia Composite Architectures for Ultrahigh-Rate Energy Storage

Hongtao Sun
TL;DR: By systematically tailoring the porosity in the holey graphene backbone, charge transport in the composite architecture is optimized to deliver high areal capacity and high-rate capability at high mass loading, which represents a critical step forward toward practical applications.
Journal ArticleDOI

Mesoporous materials for energy conversion and storage devices

TL;DR: A review of mesoporous materials can be found in this paper, where the authors summarize the primary methods for preparing mesopore materials and discuss their applications as electrodes and/or catalysts in solar cells, solar fuel production, rechargeable batteries, supercapacitors and fuel cells.
Journal ArticleDOI

An Outlook on Lithium Ion Battery Technology

TL;DR: An outlook on lithium ion technology is presented by providing first the current status and then the progress and challenges with the ongoing approaches, and finally points out practically viable near-term strategies.
References
More filters
Journal ArticleDOI

Building better batteries

TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Journal ArticleDOI

High-performance lithium battery anodes using silicon nanowires

TL;DR: The theoretical charge capacity for silicon nanowire battery electrodes is achieved and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.
Journal ArticleDOI

Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells

TL;DR: In this paper, a review of methodologies adopted for reducing the capacity fade observed in silicon-based anodes, discuss the challenges that remain in using silicon and siliconbased anode, and propose possible approaches for overcoming them.
Journal ArticleDOI

Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control

TL;DR: It is shown that anodes consisting of an active silicon nanotube surrounded by an ion-permeable silicon oxide shell can cycle over 6,000 times in half cells while retaining more than 85% of their initial capacity.
Journal ArticleDOI

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes

TL;DR: The design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation, resulting in superior cyclability and Coulombic efficiency.
Related Papers (5)