scispace - formally typeset
Journal ArticleDOI

Multilevel Voltage-Source-Converter Topologies for Industrial Medium-Voltage Drives

Reads0
Chats0
TLDR
This paper covers the high-power voltage-source inverter and the most used multilevel-inverter topologies, including the neutral-point-clamped, cascaded H-bridge, and flying-capacitor converters.
Abstract
This paper presents a technology review of voltage-source-converter topologies for industrial medium-voltage drives. In this highly active area, different converter topologies and circuits have found their application in the market. This paper covers the high-power voltage-source inverter and the most used multilevel-inverter topologies, including the neutral-point-clamped, cascaded H-bridge, and flying-capacitor converters. This paper presents the operating principle of each topology and a review of the most relevant modulation methods, focused mainly on those used by industry. In addition, the latest advances and future trends of the technology are discussed. It is concluded that the topology and modulation-method selection are closely related to each particular application, leaving a space on the market for all the different solutions, depending on their unique features and limitations like power or voltage level, dynamic performance, reliability, costs, and other technical specifications.

read more

Citations
More filters
Journal ArticleDOI

Overview of Dual-Active-Bridge Isolated Bidirectional DC–DC Converter for High-Frequency-Link Power-Conversion System

TL;DR: In this paper, the dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit of high frequency-link (HFL) power conversion systems.
Journal ArticleDOI

Medium-Voltage Multilevel Converters—State of the Art, Challenges, and Requirements in Industrial Applications

TL;DR: An inverter configuration based on three-level building blocks to generate five-level voltage waveforms is suggested and it is shown that such an inverter may be operated at a very low switching frequency to achieve minimum on-state and dynamic device losses for highly efficient MV drive applications while maintaining low harmonic distortion.
Journal ArticleDOI

Multilevel Converters: An Enabling Technology for High-Power Applications

TL;DR: This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.
Journal ArticleDOI

Multidimensional Modulation Technique for Cascaded Multilevel Converters

TL;DR: A simple and low-computational-cost modulation technique for multilevel cascaded H-bridge converters based on geometrical considerations considering a unidimensional control region to determine the switching sequence and the corresponding switching times is presented.

Multilevel Converters: An Enabling Technology for High-Power Applications Multilevel converters generate voltage and current waveforms of improved quality, that can be used to power drives for trains and other vehicles, and many other applications.

TL;DR: In this paper, the authors present a tutorial on multilevel converters, covering the operating principle, modulation methods, technical issues and industry applications for high power and power-quality demanding applications.
References
More filters
Journal ArticleDOI

Multilevel inverters: a survey of topologies, controls, and applications

TL;DR: The most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-Clamped (flying capacitor), and cascaded multicell with separate DC sources are presented and the circuit topology options are presented.

A New Neutral-Point-Clamped PWM Inverter

A. Nabae
TL;DR: In this article, a neutral-point-clamped PWM inverter composed of main switching devices which operate as switches for PWM and auxiliary switching devices to clamp the output terminal potential to the neutral point potential has been developed.
Journal ArticleDOI

A New Neutral-Point-Clamped PWM Inverter

TL;DR: The neutral-point-clamped PWM inverter adopting the new PWM technique shows an excellent drive system efficiency, including motor efficiency, and is appropriate for a wide-range variable-speed drive system.
Journal ArticleDOI

Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey

TL;DR: New trends in power electronics for the integration of wind and photovoltaic (PV) power generators are presented and a review of the appropriate storage-system technology used for the Integration of intermittent renewable energy sources is introduced.
Journal ArticleDOI

A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor

TL;DR: In this article, the authors proposed a limit cycle control of both flux and torque using optimum PWM output voltage; a switching table is employed for selecting the optimum inverter output voltage vectors so as to attain as fast a torque response, as low an inverter switching frequency, and as low harmonic losses as possible.
Related Papers (5)