scispace - formally typeset
Journal ArticleDOI

Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science

Christof M. Niemeyer
- 19 Nov 2001 - 
- Vol. 40, Iss: 22, pp 4128-4158
Reads0
Chats0
TLDR
This review is focused on current approaches emerging at the intersection of materials research, nanosciences, and molecular biotechnology, which is closely associated with both the physical and chemical properties of organic and inorganic nanoparticles.
Abstract
Based on fundamental chemistry, biotechnology and materials science have developed over the past three decades into today's powerful disciplines which allow the engineering of advanced technical devices and the industrial production of active substances for pharmaceutical and biomedical applications. This review is focused on current approaches emerging at the intersection of materials research, nanosciences, and molecular biotechnology. This novel and highly interdisciplinary field of chemistry is closely associated with both the physical and chemical properties of organic and inorganic nanoparticles, as well as to the various aspects of molecular cloning, recombinant DNA and protein technology, and immunology. Evolutionary optimized biomolecules such as nucleic acids, proteins, and supramolecular complexes of these components, are utilized in the production of nanostructured and mesoscopic architectures from organic and inorganic materials. The highly developed instruments and techniques of today's materials research are used for basic and applied studies of fundamental biological processes.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology.

TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Journal ArticleDOI

Quantum dot bioconjugates for imaging, labelling and sensing

TL;DR: This review looks at current methods for preparing QD bioconjugates as well as presenting an overview of applications, and concludes that the potential of QDs in biology has just begun to be realized and new avenues will arise as the ability to manipulate these materials improves.
Journal ArticleDOI

In vivo cancer targeting and imaging with semiconductor quantum dots

TL;DR: Sensitive and multicolor fluorescence imaging of cancer cells under in vivo conditions are achieved and a whole-body macro-illumination system with wavelength-resolved spectral imaging is integrated for efficient background removal and precise delineation of weak spectral signatures.
Journal ArticleDOI

Nanostructures in Biodiagnostics

TL;DR: Nathaniel L. Rosi focuses on the rational assembly of DNA-modified nanostructures into larger-scale materials and their roles in biodiagnostic screening for nucleic acids.
References
More filters
Journal ArticleDOI

Semiconductor Clusters, Nanocrystals, and Quantum Dots

TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Journal ArticleDOI

Semiconductor Nanocrystals as Fluorescent Biological Labels

TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
MonographDOI

Supramolecular Chemistry: Concepts and Perspectives

TL;DR: From molecular to supramolescular chemistry: concepts and language of supramolecular chemistry, molecular recognition, information, complementarity molecular receptors - design principles and more.
Journal ArticleDOI

Crystal structure of the nucleosome core particle at 2.8 Å resolution

TL;DR: The X-ray crystal structure of the nucleosome core particle of chromatin shows in atomic detail how the histone protein octamer is assembled and how 146 base pairs of DNA are organized into a superhelix around it.
Journal ArticleDOI

Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection

TL;DR: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection and these nanometer-sized conjugates are water-soluble and biocompatible.
Related Papers (5)