Niches versus neutrality: uncovering the drivers of diversity in a species-rich community.
TL;DR: This work provides the first empirical evidence that a niche-neutral model can explain niche space occupancy pattern in a natural species-rich community and suggests this class of model may be a useful hypothesis for the generation and maintenance of species diversity in other size-structured communities.
Abstract: Ecological models suggest that high diversity can be generated by purely niche-based, purely neutral or by a mixture of niche-based and neutral ecological processes. Here, we compare the degree to which four contrasting hypotheses for coexistence, ranging from niche-based to neutral, explain species richness along a body mass niche axis. We derive predictions from these hypotheses and confront them with species body-mass patterns in a highly sampled marine phytoplankton community. We find that these patterns are consistent only with a mechanism that combines niche and neutral processes, such as the emergent neutrality mechanism. In this work, we provide the first empirical evidence that a niche-neutral model can explain niche space occupancy pattern in a natural species-rich community. We suggest this class of model may be a useful hypothesis for the generation and maintenance of species diversity in other size-structured communities.
Content maybe subject to copyright Report
Citations
More filters
[...]
TL;DR: A framework for disentangling the relative importance of deterministic and stochastic processes in generating site-to-site variation in species composition along ecological gradients and among biogeographic regions that differ in the size of the regional species pool is developed.
Abstract: Deterministic theories in community ecology suggest that local, niche-based processes, such as environmental filtering, biotic interactions and interspecific trade-offs largely determine patterns of species diversity and composition. In contrast, more stochastic theories emphasize the importance of chance colonization, random extinction and ecological drift. The schisms between deterministic and stochastic perspectives, which date back to the earliest days of ecology, continue to fuel contemporary debates (e.g. niches versus neutrality). As illustrated by the pioneering studies of Robert H. MacArthur and co-workers, resolution to these debates requires consideration of how the importance of local processes changes across scales. Here, we develop a framework for disentangling the relative importance of deterministic and stochastic processes in generating site-to-site variation in species composition (β-diversity) along ecological gradients (disturbance, productivity and biotic interactions) and among biogeographic regions that differ in the size of the regional species pool. We illustrate how to discern the importance of deterministic processes using null-model approaches that explicitly account for local and regional factors that inherently create stochastic turnover. By embracing processes across scales, we can build a more synthetic framework for understanding how niches structure patterns of biodiversity in the face of stochastic processes that emerge from local and biogeographic factors.
833 citations
[...]
TL;DR: This work redefined the traditional concept of assembly rules in a more general framework where the co‐occurrence of species is a product of chance, historical patterns of speciation and migration, dispersal, abiotic environmental factors, and biotic interactions, with none of these processes being mutually exclusive.
Abstract: Understanding how communities of living organisms assemble has been a central question in ecology since the early days of the discipline. Disentangling the different processes involved in community assembly is not only interesting in itself but also crucial for an understanding of how communities will behave under future environmental scenarios. The traditional concept of assembly rules reflects the notion that species do not co-occur randomly but are restricted in their co-occurrence by interspecific competition. This concept can be redefined in a more general framework where the co-occurrence of species is a product of chance, historical patterns of speciation and migration, dispersal, abiotic environmental factors, and biotic interactions, with none of these processes being mutually exclusive. Here we present a survey and meta-analyses of 59 papers that compare observed patterns in plant communities with null models simulating random patterns of species assembly. According to the type of data under study and the different methods that are applied to detect community assembly, we distinguish four main types of approach in the published literature: species co-occurrence, niche limitation, guild proportionality and limiting similarity. Results from our meta-analyses suggest that non-random co-occurrence of plant species is not a widespread phenomenon. However, whether this finding reflects the individualistic nature of plant communities or is caused by methodological shortcomings associated with the studies considered cannot be discerned from the available metadata. We advocate that more thorough surveys be conducted using a set of standardized methods to test for the existence of assembly rules in data sets spanning larger biological and geographical scales than have been considered until now. We underpin this general advice with guidelines that should be considered in future assembly rules research. This will enable us to draw more accurate and general conclusions about the non-random aspect of assembly in plant communities.
621 citations
[...]
TL;DR: These results suggest that plant population and community dynamics in grassland communities should increase with increasing biomass and decrease with distur-bance ingrassland communities, and emphasize that contrasting community assembly processes mayoccurfordifferentnicheaxes, even withinasinglecommunity.
Abstract: Summary1. Understanding the processes by which species sort themselves into communities remains acentralpuzzleforattemptstomaintainbiodiversity.Itremainsunclearwhetheranysingleassemblyprocess is generally dominant or whether the influence of contrasting processes varies in a predict-able way relative to biotic and abiotic gradients. Abundance-weighted niche overlap betweenspeciesprovidesapowerfulmeansofcontrastingtwomajorassemblyprocesses–nichecomplemen-tarityandenvironmentalfiltering.2. We examined mean overlap for four vegetative functional traits, relative to that expected whenabundances were randomly allocated to species co-occurring in experimental plots in a wet mea-dow. This provided a test of whether any single assembly process prevailed for the meadow as awhole and across all traits. The effects of mowing, fertilization and dominant species removal, andassociated gradients of Simpson’s dominance and biomass on the niche overlap of plots, were alsoexamined.3. Nicheoverlapwashigherthanexpectedatrandomforthreeofthefourtraitsstudied(height,leafand stem dry matter content, leaf C:N ratio). However, niche overlap was lower than expected forspecificleafarea.4. Mowingwasthetreatmentwiththegreatesteffectonbothnicheoverlapandbiomass,withover-lap significantly lower in the absence of mowing for three of the traits, while biomass was lower inmown plots. For three of the traits there was evidence of a significant decrease in overlap withincreasing biomass, but notincreasing dominance. None of the significant mowing effects on over-lapremainedwhentheeffectofbiomasshadbeenremoved.5. Synthesis: Theseresultssuggestthattheimportanceofnichedifferencesbetweenspeciesinstruc-turing grassland communities should increase with increasing biomass and decrease with distur-bance in grassland communities. They also emphasize that contrasting community assemblyprocessesmayoccurfordifferentnicheaxes,evenwithinasinglecommunity.Key-words: coexistence, complementarity, fertilization, functional trait, meadow, mowing,null model, plant population and community dynamics, productivity, removalIntroduction
178 citations
[...]
TL;DR: The results demonstrate that at high fertility dominant species differ in resource use strategy, but as soil fertility declines over the long-term, dominant species increasingly converge on a resource-retentive strategy, which suggests that differentiation in resourceUse strategy is required for co-existence at highertility but not in low fertility ecosystems.
Abstract: 1. Functional trait diversity can reveal mechanisms of species co-existence in plant communities. Few studies have tested whether functional diversity for foliar traits related to resource use strategy increases or decreases with declining soil phosphorus (P) in forest communities.
2. We quantified tree basal area and four foliar functional traits (i.e. nitrogen (N), phosphorus (P), thickness and tissue density) for all woody species along the c. 120 kyr Franz Josef soil chronosequence in cool temperate rainforest, where strong shifts occur in light and soil nutrient availability (i.e. total soil P declines from 805 to 100 mg g–1). We combined the abundance and trait data in functional diversity indices to quantify trait convergence and divergence, in an effort to determine whether mechanisms of co-existence change with soil fertility.
3. Relationships between species trait means and total soil N and P were examined using multiple regression, with and without weighting of species abundances. We used Rao’s quadratic entropy to quantify functional diversity at the plot scale, then compared this with random expectation, using a null model that randomizes abundances across species within plots. Taxonomic diversity was measured using Simpson’s Diversity. Relationships between functional and taxonomic diversity and total soil P were examined using jackknife linear regression.
4. Leaf N and P declined and leaf thickness and density increased monotonically with declining total soil P along the sequence; these relationships were unaffected by abundance-weighting of species in the analyses. Inclusion of total soil N did not improve predictions of trait means. All measures of diversity calculated from presence/absence data were unrelated to total soil N and P. There was no evidence for a relationship between Rao values using quantitative abundances and total soil P. However, there was a strongly positive relationship between Rao, expressed relative to random expectation, and total soil P, indicating trait convergence of dominant species as soil P declined.
5. Synthesis: Our results demonstrate that at high fertility dominant species differ in resource use strategy, but as soil fertility declines over the long-term, dominant species increasingly converge on a resource-retentive strategy. This suggests that differentiation in resource use strategy is required for co-existence at high fertility but not in low fertility ecosystems.
170 citations
[...]
TL;DR: This work introduces 12 different forms of functional rarity along gradients of species scarcity and trait distinctiveness and highlights the potential key role offunctional rarity in the long-term and large-scale maintenance of ecosystem processes.
Abstract: Rarity has been a central topic for conservation and evolutionary biologists aiming to determine the species characteristics that cause extinction risk. More recently, beyond the rarity of species, the rarity of functions or functional traits, called functional rarity, has gained momentum in helping to understand the impact of biodiversity decline on ecosystem functioning. However, a conceptual framework for defining and quantifying functional rarity is still lacking. We introduce 12 different forms of functional rarity along gradients of species scarcity and trait distinctiveness. We then highlight the potential key role of functional rarity in the long-term and large-scale maintenance of ecosystem processes, as well as the necessary linkage between functional and evolutionary rarity.
164 citations
References
More filters
Book•
[...]
30 May 2017
TL;DR: In this article, a simple linear model is proposed to describe the geometry of linear models, and a general linear model specification in R is presented. But the theory of linear model theory is not discussed.
Abstract: LINEAR MODELS A simple linear model Linear models in general The theory of linear models The geometry of linear modelling Practical linear models Practical modelling with factors General linear model specification in R Further linear modelling theory Exercises GENERALIZED LINEAR MODELS The theory of GLMs Geometry of GLMs GLMs with R Likelihood Exercises INTRODUCING GAMS Introduction Univariate smooth functions Additive models Generalized additive models Summary Exercises SOME GAM THEORY Smoothing bases Setting up GAMs as penalized GLMs Justifying P-IRLS Degrees of freedom and residual variance estimation Smoothing Parameter Estimation Criteria Numerical GCV/UBRE: performance iteration Numerical GCV/UBRE optimization by outer iteration Distributional results Confidence interval performance Further GAM theory Other approaches to GAMs Exercises GAMs IN PRACTICE: mgcv Cherry trees again Brain imaging example Air pollution in Chicago example Mackerel egg survey example Portuguese larks example Other packages Exercises MIXED MODELS and GAMMs Mixed models for balanced data Linear mixed models in general Linear mixed models in R Generalized linear mixed models GLMMs with R Generalized additive mixed models GAMMs with R Exercises APPENDICES A Some matrix algebra B Solutions to exercises Bibliography Index
8,137 citations
"Niches versus neutrality: uncoverin..." refers methods in this paper
[...]
Book•
[...]
TL;DR: A study of the issue indicates that it is not a serious problem for neutral theory, and there is sometimes a difference between some of the simulation-based results of Hubbell and the analytical results of Volkov et al. (2003).
Abstract: study of the issue indicates that it is not a serious problem for neutral theory, for reasons we discuss below. First, a bit of background. Hubbell (2001) derived the analytical expression for the stochastic mean and variance of the abundance of a single arbitrary species in a neutral community undergoing immigration from a metacommunity source area. However, his approach did not lend itself to an analytical solution for the distribution of relative species abundance (RSA) in a multispecies community for community sizes larger than a handful of individuals. As a result, all of Hubbell's RSA distributions for local communities were based on simulations. This problem was solved by Volkov et al. (2003), who derived an analytical expression for the RSA distribution in local communities of arbitrary size. However, as Chisholm and Burgman noted, there is sometimes a difference between some of the simulation-based results of Hubbell and the analytical results of Volkov et al. (2003). Chisholm and Burgman computed Volkov's equation and resimulated Hubbell's results for the four cases
5,316 citations
[...]
TL;DR: Stabilizing mechanisms are essential for species coexistence and include traditional mechanisms such as resource partitioning and frequency-dependent predation, as well as mechanisms that depend on fluctuations in population densities and environmental factors in space and time.
Abstract: ▪ Abstract The focus of most ideas on diversity maintenance is species coexistence, which may be stable or unstable. Stable coexistence can be quantified by the long-term rates at which community members recover from low density. Quantification shows that coexistence mechanisms function in two major ways: They may be (a) equalizing because they tend to minimize average fitness differences between species, or (b) stabilizing because they tend to increase negative intraspecific interactions relative to negative interspecific interactions. Stabilizing mechanisms are essential for species coexistence and include traditional mechanisms such as resource partitioning and frequency-dependent predation, as well as mechanisms that depend on fluctuations in population densities and environmental factors in space and time. Equalizing mechanisms contribute to stable coexistence because they reduce large average fitness inequalities which might negate the effects of stabilizing mechanisms. Models of unstable coexitence...
4,552 citations
"Niches versus neutrality: uncoverin..." refers background in this paper
[...]
[...]
TL;DR: By emphasizing the very aspects that might result in their denial of them were they less plain the authors can keep the principle explicitly present in their minds untit they see if its implications are, or are noty as unpleasant as their subconscious might suppose.
Abstract: because of a belief that it is best to use that wording which is least likely to hide the fact that we still do not comprehend the exact limits of the principle. For the present, I think the 6'threat of clarity\" (3) is a serious one that is best miniInized by using a formulation that is admittedly unclear; thus can we keep in the forefront of our minds the unfinished work before us. The wording given has, I think, another point of superiority in that it seems brutal and dogmatic. By emphasizing the very aspects that might result in our denial of them were they less plain we can keep the principle explicitly present in our minds untit we see if its implications are, or are noty as unpleasant as our subconscious might suppose. The meaning of these somewhat cryptic remarks should be come clear further on iIl the discussion. What does the exclusion principle mean? Itoughly this: that (i) if two noninterbreeding populations \"do the same thing\"-that is, occupy precisely the same ecological niche in Elton's sense (4)-and (ii) if they are \"sympatric\"that is, if they occupy the same geographic territory-and (iii) if population A multiplies even the least bit faster than population B, then ultimately A will completely displace B, which will become extinct. This is the 44weak form' of the principle. A1ways in practice a stronger form is used, based on the removal of the hypothetical character of condition (iii). We do this because we adhere to what may be caIled the axiom of inequality, which states that no two things or processes
2,785 citations
"Niches versus neutrality: uncoverin..." refers background in this paper
[...]
[...]
TL;DR: The problem that is presented by the phytoplankton is essentially how it is possible for a number of species to coexist in a relatively isotropic or unstructured environment all competing for the same sorts of materials.
Abstract: The problem that I wish to discuss in the present contribution is raised by the very paradoxical situation of the plankton, particularly the phytoplankton, of relatively large bodies of water. We know from laboratory experiments conducted by many workers over a long period of time (summary in Provasoli and Pintner, 1960) that most members of the phytoplankton are phototrophs, able to reproduce and build up populations in inorganic media containing a source of CO2, inorganic nitrogen, sulphur, and phosphorus compounds and a considerable number of other elements (Na, K, Mg, Ca, Si, Fe, Mn, B, C1, Cu, Zn, Mo, Co and V) most of which are required in small concentrations and not all of which are known to be required by all groups. In addition, a number of species are known which require one or more vitamins, namely thiamin, the cobalamines (B or related compounds), or biotin. The problem that is presented by the phytoplankton is essentially how it is possible for a number of species to coexist in a relatively isotropic or unstructured environment all competing for the same sorts of materials. The problem is particularly acute because there is adequate evidence from enrichment experiments that natural waters, at least in the summer, present an environment of striking nutrient deficiency, so that competition is likely to be extremely severe. According to the principle of competitive exclusion (Hardin, 1960) known by many names and developed over a long period of time by many investigators (see Rand, 1952; Udvardy, 1959; and Hardin, 1960, for historic reviews), we should expect that one species alone would outcompete all the others so that in a final equilibrium situation the assemblage would reduce to a population of a single species. The principle of competitive exclusion has recently been under attack from a number of quarters. Since the principle can be deduced mathematically from a relatively simple series of postulates, which with the ordinary postulates of mathematics can be regarded as forming an axiom system, it follows that if the objections to the principle in any cases are valid, some or all the biological axioms introduced are in these cases incorrect. Most objections to the principle appear to imply the belief that equilibrium under a given set of environmental conditions is never in practice obtained. Since the deduction of the principle implies an equilibrium system, if such sys-
2,715 citations
"Niches versus neutrality: uncoverin..." refers background in this paper
[...]
Related Papers (5)
[...]