scispace - formally typeset
Open Access

Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High-Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries

Reads0
Chats0
TLDR
In this article, a mesoporous nitrogen-doped carbon (MPNC)-sulfur nanocomposite is reported as a novel cathode for advanced Li-S batteries.
Abstract
As one important component of sulfur cathodes, the carbon host plays a key role in the electrochemical performance of lithium-sulfur (Li-S) batteries. In this paper, a mesoporous nitrogen-doped carbon (MPNC)-sulfur nanocomposite is reported as a novel cathode for advanced Li-S batteries. The nitrogen doping in the MPNC material can effectively promote chemical adsorption between sulfur atoms and oxygen functional groups on the carbon, as verifi ed by X-ray absorption near edge structure spectroscopy, and the mechanism by which nitrogen enables the behavior is further revealed by density functional theory calculations. Based on the advantages of the porous structure and nitrogen doping, the MPNC-sulfur cathodes show excellent cycling stability (95% retention within 100 cycles) at a high current density of 0.7 mAh cm −2 with a high sulfur loading (4.2 mg S cm −2 ) and a sulfur content (70 wt%). A high areal capacity (≈3.3 mAh cm −2 ) is demonstrated by using the novel cathode, which is crucial for the practical application of Li-S batteries. It is believed that the important role of nitrogen doping promoted chemical adsorption can be extended for development of other high performance carbon-sulfur composite cathodes for Li-S batteries.

read more

Citations
More filters
Journal ArticleDOI

Promise and reality of post-lithium-ion batteries with high energy densities

TL;DR: A review of post-lithium-ion batteries is presented in this paper with a focus on their operating principles, advantages and the challenges that they face, and the volumetric energy density of each battery is examined using a commercial pouch-cell configuration.
Journal ArticleDOI

Designing high-energy lithium–sulfur batteries

TL;DR: This review aims to summarize major developments in the field of lithium-sulfur batteries, starting from an overview of their electrochemistry, technical challenges and potential solutions, along with some theoretical calculation results to advance the understanding of the material interactions involved.
Journal ArticleDOI

Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes

TL;DR: In this article, a review of recent developments in tackling the dissolution of polysulfides, a fundamental problem in Li-S batteries, focusing on both experimental and computational approaches to tailor the chemical interactions between the sulfur host materials and poly sulfides is presented.
Journal ArticleDOI

Review on High-Loading and High-Energy Lithium–Sulfur Batteries

TL;DR: In this paper, the authors highlight the recent progress in high-sulfur-loading Li-S batteries enabled by hierarchical design principles at multiscale, particularly, basic insights into the interfacial reactions, strategies for mesoscale assembly, unique architectures, and configurational innovation in the cathode, anode, and separator.
Journal ArticleDOI

More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects.

TL;DR: The Li-S battery is a complex device and its useful energy density is determined by a number of design parameters, most of which are often ignored, leading to the failure to meet commercial requirements, so how to pave the way for reliableLi-S batteries is discussed.
References
More filters
Journal ArticleDOI

ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.

TL;DR: A software package for the analysis of X-ray absorption spectroscopy (XAS) data is presented, based on the IFEFFIT library of numerical and XAS algorithms and is written in the Perl programming language using the Perl/Tk graphics toolkit.
Journal ArticleDOI

Li-O2 and Li-S batteries with high energy storage.

TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Journal ArticleDOI

Lithium Batteries and Cathode Materials

TL;DR: This paper will describe lithium batteries in more detail, building an overall foundation for the papers that follow which describe specific components in some depth and usually with an emphasis on the materials behavior.
Journal ArticleDOI

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries

TL;DR: In this paper, the authors report the feasibility to approach such capacities by creating highly ordered interwoven composites, where conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur.
Journal ArticleDOI

Promise and reality of post-lithium-ion batteries with high energy densities

TL;DR: A review of post-lithium-ion batteries is presented in this paper with a focus on their operating principles, advantages and the challenges that they face, and the volumetric energy density of each battery is examined using a commercial pouch-cell configuration.
Related Papers (5)