scispace - formally typeset
Open AccessJournal ArticleDOI

Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes

Reads0
Chats0
TLDR
In this paper, a numerical algorithm integrating the 3N Cartesian equations of motion of a system of N points subject to holonomic constraints is formulated, and the relations of constraint remain perfectly fulfilled at each step of the trajectory despite the approximate character of numerical integration.
About
This article is published in Journal of Computational Physics.The article was published on 1977-03-01 and is currently open access. It has received 18394 citations till now. The article focuses on the topics: Generalized coordinates & Holonomic constraints.

read more

Citations
More filters
Journal ArticleDOI

Lipid14: The Amber Lipid Force Field

TL;DR: The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package, and is compatible with theAMBER protein, nucleic acid, carbohydrate, and small molecule force fields.
Journal ArticleDOI

Calculating free energies using average force

TL;DR: In this article, a general formula that connects the derivatives of the free energy along the selected, generalized coordinates of the system with the instantaneous force acting on these coordinates is derived, defined as the forces acting on the coordinate of interest so that when it is subtracted from the equations of motion the acceleration along this coordinate is zero.
Journal ArticleDOI

Umbrella sampling: Umbrella sampling

TL;DR: In this paper, the authors compare the performance of umbrella sampling, biased molecular dynamics (MD) and other methods, such as thermodynamic integration, slow growth, steered MD, or the Jarzynski-based fast growth technique.
Journal ArticleDOI

An Improved GROMOS96 Force Field for Aliphatic Hydrocarbons in the Condensed Phase

TL;DR: The GROMOS96 45A3 parameter set should be suitable for application to lipid aggregates such as membranes and micelles, for mixed systems of aliphatics with or without water, for polymers, and other apolar systems that may interact with different biomolecules.
References
More filters
Journal ArticleDOI

Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules

TL;DR: In this article, the equilibrium properties of a system of 864 particles interacting through a Lennard-Jones potential have been integrated for various values of the temperature and density, relative, generally, to a fluid state.
Journal ArticleDOI

Improved simulation of liquid water by molecular dynamics

TL;DR: In this paper, a four-charge model for each molecule and a modification of the prior ''BNS'' interaction was proposed to improve the fidelity of the molecular dynamics simulation, leading to a density maximum near 27°C for the liquid in coexistence with its vapor and to molecular distribution functions in better agreement with x-ray scattering experiments.
Journal ArticleDOI

Molecular Dynamics Study of Liquid Water

TL;DR: In this paper, a sample of water, consisting of 216 rigid molecules at mass density 1 gm/cm3, has been simulated by computer using the molecular dynamics technique, subject to an effective pair potential that incorporates the principal structural effects of manybody interactions in real water.
Journal ArticleDOI

Molecular dynamics of liquid n-butane near its boiling point

TL;DR: The self-diffusion coefficient of n-butane is approximately 6.0 × 10−5 cm2/s and the corresponding velocity autocorrelation function displays practically no cage effect, differing markedly from argon and other simple fluids.
Journal ArticleDOI

Simulation of Diatomic Homonuclear Liquids

TL;DR: In this paper, the authors used the molecular-dynamic method to simulate a fluid of 500 rigid diatomic homo-nuclear molecules interacting by a double Lennard-Jones potential.
Related Papers (5)