scispace - formally typeset
Open AccessJournal ArticleDOI

Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator

Reads0
Chats0
TLDR
Here, a quantum simulator composed of up to 53 qubits is used to study non-equilibrium dynamics in the transverse-field Ising model with long-range interactions, enabling the dynamical phase transition to be probed directly and revealing computationally intractable features that rely on the long- range interactions and high connectivity between qubits.
Abstract
A quantum simulator is a type of quantum computer that controls the interactions between quantum bits (or qubits) in a way that can be mapped to certain quantum many-body problems. As it becomes possible to exert more control over larger numbers of qubits, such simulators will be able to tackle a wider range of problems, such as materials design and molecular modelling, with the ultimate limit being a universal quantum computer that can solve general classes of hard problems. Here we use a quantum simulator composed of up to 53 qubits to study non-equilibrium dynamics in the transverse-field Ising model with long-range interactions. We observe a dynamical phase transition after a sudden change of the Hamiltonian, in a regime in which conventional statistical mechanics does not apply. The qubits are represented by the spins of trapped ions, which can be prepared in various initial pure states. We apply a global long-range Ising interaction with controllable strength and range, and measure each individual qubit with an efficiency of nearly 99 per cent. Such high efficiency means that arbitrary many-body correlations between qubits can be measured in a single shot, enabling the dynamical phase transition to be probed directly and revealing computationally intractable features that rely on the long-range interactions and high connectivity between qubits.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Quantum Computing in the NISQ era and beyond

TL;DR: Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future as mentioned in this paper, which will be useful tools for exploring many-body quantum physics, and may have other useful applications.
Journal ArticleDOI

Quantum Computing in the NISQ era and beyond

TL;DR: Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future, and the 100-qubit quantum computer will not change the world right away - but it should be regarded as a significant step toward the more powerful quantum technologies of the future.
Journal ArticleDOI

Quantum Phase Transitions

TL;DR: In this paper, the role of pertubative renormalization group (RG) approaches and self-consistent renormalized spin fluctuation (SCR-SF) theories to understand the quantum-classical crossover in the vicinity of the quantum critical point with generalization to the Kondo effect in heavy-fermion systems is discussed.
Journal ArticleDOI

Quantum Chemistry in the Age of Quantum Computing.

TL;DR: This Review provides an overview of the algorithms and results that are relevant for quantum chemistry and aims to help quantum chemists who seek to learn more about quantum computing and quantum computing researchers who would like to explore applications in quantum chemistry.
Journal ArticleDOI

Trapped-ion quantum computing: Progress and challenges

TL;DR: In this article, the authors review the state of the field of trapped ion quantum computing and discuss what is being done, and what may be required, to increase the scale of trapped ions quantum computers while mitigating decoherence and control errors.
References
More filters
Book

Quantum Computation and Quantum Information

TL;DR: In this article, the quantum Fourier transform and its application in quantum information theory is discussed, and distance measures for quantum information are defined. And quantum error-correction and entropy and information are discussed.
Journal ArticleDOI

Quantum computation and quantum information

TL;DR: This special issue of Mathematical Structures in Computer Science contains several contributions related to the modern field of Quantum Information and Quantum Computing, with a focus on entanglement.
Journal ArticleDOI

Simulating physics with computers

TL;DR: In this paper, the authors describe the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations, and the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature.
Journal ArticleDOI

Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets

TL;DR: The experimental optimization of Hamiltonian problems with up to six qubits and more than one hundred Pauli terms is demonstrated, determining the ground-state energy for molecules of increasing size, up to BeH2.
Journal ArticleDOI

Probing many-body dynamics on a 51-atom quantum simulator.

TL;DR: This work demonstrates a method for creating controlled many-body quantum matter that combines deterministically prepared, reconfigurable arrays of individually trapped cold atoms with strong, coherent interactions enabled by excitation to Rydberg states, and realizes a programmable Ising-type quantum spin model with tunable interactions and system sizes of up to 51 qubits.
Related Papers (5)

Quantum supremacy using a programmable superconducting processor

Frank Arute, +85 more
- 24 Oct 2019 -