scispace - formally typeset
Open AccessJournal ArticleDOI

Occipital Alpha Activity during Stimulus Processing Gates the Information Flow to Object-Selective Cortex

Reads0
Chats0
TLDR
A simultaneous EEG-fMRI study demonstrates that alpha-band activity in early visual cortex is associated with gating visual information to downstream regions, boosting attended information and suppressing distraction.
Abstract
Given the limited processing capabilities of the sensory system, it is essential that attended information is gated to downstream areas, whereas unattended information is blocked. While it has been proposed that alpha band (8–13 Hz) activity serves to route information to downstream regions by inhibiting neuronal processing in task-irrelevant regions, this hypothesis remains untested. Here we investigate how neuronal oscillations detected by electroencephalography in visual areas during working memory encoding serve to gate information reflected in the simultaneously recorded blood-oxygenation-level-dependent (BOLD) signals recorded by functional magnetic resonance imaging in downstream ventral regions. We used a paradigm in which 16 participants were presented with faces and landscapes in the right and left hemifields; one hemifield was attended and the other unattended. We observed that decreased alpha power contralateral to the attended object predicted the BOLD signal representing the attended object in ventral object-selective regions. Furthermore, increased alpha power ipsilateral to the attended object predicted a decrease in the BOLD signal representing the unattended object. We also found that the BOLD signal in the dorsal attention network inversely correlated with visual alpha power. This is the first demonstration, to our knowledge, that oscillations in the alpha band are implicated in the gating of information from the visual cortex to the ventral stream, as reflected in the representationally specific BOLD signal. This link of sensory alpha to downstream activity provides a neurophysiological substrate for the mechanism of selective attention during stimulus processing, which not only boosts the attended information but also suppresses distraction. Although previous studies have shown a relation between the BOLD signal from the dorsal attention network and the alpha band at rest, we demonstrate such a relation during a visuospatial task, indicating that the dorsal attention network exercises top-down control of visual alpha activity.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Rhythms for Cognition: Communication through Coherence.

TL;DR: Several rhythms and their interplay render neuronal communication effective, precise, and selective in neuronal groups.
Journal ArticleDOI

Top-down control of the phase of alpha-band oscillations as a mechanism for temporal prediction

TL;DR: These findings provide direct evidence that forming predictions about when a stimulus will appear can bias the phase of ongoing alpha-band oscillations toward an optimal phase for visual processing, and may thus serve as a mechanism for the top-down control of visual processing guided by temporal predictions.
Journal ArticleDOI

A multi-layer network approach to MEG connectivity analysis.

TL;DR: These findings demonstrate the unique potential of MEG to characterise neural network formation and dissolution and add weight to the argument that dysconnectivity is a core feature of the neuropathology underlying schizophrenia.
Journal ArticleDOI

Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints.

TL;DR: It is shown that each brain area engages in different spectral modes that are characteristic for individual areas, which have important implications for the classification of regional spectral activity and allow for novel approaches in neuroimaging and neurostimulation in health and disease.
References
More filters
Journal ArticleDOI

Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain

TL;DR: An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute was performed and it is believed that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain.
Journal ArticleDOI

Control of goal-directed and stimulus-driven attention in the brain

TL;DR: Evidence for partially segregated networks of brain areas that carry out different attentional functions is reviewed, finding that one system is involved in preparing and applying goal-directed selection for stimuli and responses, and the other is specialized for the detection of behaviourally relevant stimuli.
Journal ArticleDOI

FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data

TL;DR: FieldTrip is an open source software package that is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data.
Journal ArticleDOI

The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception

TL;DR: The data allow us to reject alternative accounts of the function of the fusiform face area (area “FF”) that appeal to visual attention, subordinate-level classification, or general processing of any animate or human forms, demonstrating that this region is selectively involved in the perception of faces.
Journal ArticleDOI

A mechanism for cognitive dynamics: neuronal communication through neuronal coherence

TL;DR: It is hypothesized that neuronal communication is mechanistically subserved by neuronal coherence, and a flexible pattern of coherence defines a flexible communication structure, which subserves the authors' cognitive flexibility.
Related Papers (5)