scispace - formally typeset
Open AccessJournal ArticleDOI

Operational Resource Theory of Coherence.

TLDR
An operational theory of coherence (or of superposition) in quantum systems is established, by focusing on the optimal rate of performance of certain tasks, by demonstrating that the coherence theory is generically an irreversible theory by a simple criterion that completely characterizes all reversible states.
Abstract
We establish an operational theory of coherence (or of superposition) in quantum systems, by focusing on the optimal rate of performance of certain tasks. Namely, we introduce the two basic concepts-"coherence distillation" and "coherence cost"-in the processing quantum states under so-called incoherent operations [Baumgratz, Cramer, and Plenio, Phys. Rev. Lett. 113, 140401 (2014)]. We, then, show that, in the asymptotic limit of many copies of a state, both are given by simple single-letter formulas: the distillable coherence is given by the relative entropy of coherence (in other words, we give the relative entropy of coherence its operational interpretation), and the coherence cost by the coherence of formation, which is an optimization over convex decompositions of the state. An immediate corollary is that there exists no bound coherent state in the sense that one would need to consume coherence to create the state, but no coherence could be distilled from it. Further, we demonstrate that the coherence theory is generically an irreversible theory by a simple criterion that completely characterizes all reversible states.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Quantifying quantum coherence via Kirkwood-Dirac quasiprobability

TL;DR: In this article , the authors use the Kirkwood-Dirac (KD) quasiprobability to access the quantum coherence in a quantum state, which is a quantum analog of phase space probability of classical statistical mechanics, allowing negative or/and nonreal values.
Journal ArticleDOI

Basis-independent quantum coherence and its distribution in spin chains with three-site interaction

TL;DR: In this article , the basis-independent coherence of spin-pairs and its distribution (collective and localized coherence) were studied in spin chains with three-site interaction.
Journal ArticleDOI

A Note on the Relationship Between Genuinely Coherence and Generalized Entanglement Monotones

TL;DR: In this paper, a one-to-one mapping between genuinely incoherent operations and one-way local operations and classical communication (LOCC) for density matrices with full rank was found.
Posted Content

Coherence Concurrence for X States

TL;DR: In this paper, the authors studied the properties of coherence concurrence and presented a physical explanation analogous to the coherence of assistance, and gave an optimal pure state decomposition which attains the concurrence for qubit states.
References
More filters
Book

Elements of information theory

TL;DR: The author examines the role of entropy, inequality, and randomness in the design of codes and the construction of codes in the rapidly changing environment.
Journal ArticleDOI

Entanglement of Formation of an Arbitrary State of Two Qubits

TL;DR: In this article, an explicit formula for the entanglement of formation of a pair of binary quantum objects (qubits) as a function of their density matrix was conjectured.
Journal ArticleDOI

Quantum entanglement

TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Book

Inequalities: Theory of Majorization and Its Applications

TL;DR: In this paper, Doubly Stochastic Matrices and Schur-Convex Functions are used to represent matrix functions in the context of matrix factorizations, compounds, direct products and M-matrices.
Journal ArticleDOI

Quantifying Coherence

TL;DR: In this article, a rigorous framework for quantification of coherence and identification of intuitive and easily computable measures for coherence has been proposed by adopting coherence as a physical resource.
Related Papers (5)