scispace - formally typeset
Open AccessBook

Photoelectron and Auger Spectroscopy

TLDR
In this paper, the authors present a review of the literature on electron spectroscopy and its application in the field of computer vision. But they do not discuss the specific applications of electron spectrograms.
Abstract
1 Introduction.- 1. History.- 2. Scope of Present Book and Review of Past Books.- 3. Name-Calling.- 4. Areas Related to Electron Spectroscopy Not to be Discussed in Detail.- 4.1. Electron-Impact Spectroscopy.- 4.2. Photoemission.- 4.3. Penning Ionization Spectroscopy.- 4.4. Ion Neutralization Spectroscopy.- 5. Fields Related to Electron Spectroscopy.- 2 Instrumentation and Experimental Procedures.- 1. Source Volume.- 1.1. Excitation Devices.- 1.1.1. Electron Gun.- 1.1.2. X-Ray Tube.- 1.1.3. Synchrotron Radiation.- 1.1.4. Vacuum-UV Sources.- 1.2. Target Sample.- 1.2.1. Gases.- 1.2.2. Solids.- 1.2.3. Condensed Vapors, Liquids, and Targets at Other Than Room Temperature.- 1.3. Chamber for Angular Distribution Studies.- 1.4. Preacceleration and Deceleration.- 2. Analyzer.- 2.1. Cancellation of Magnetic Fields.- 2.1.1. Helmholtz Coils.- 2.1.2. Magnetic Shielding.- 2.2. Types of Analyzers.- 2.2.1. Retarding Grid.- 2.2.2. Dispersion.- 3. Detector Systems and Data Analysis.- 3.1. Single-Channel Detector.- 3.2. Position-Sensitive Detector.- 3.3. Scanning the Spectrum.- 3.4. Data Analysis.- 4. New Developments.- 5. Review of Commercial Instruments.- 5.1. AEI.- 5.2. Du Pont.- 5.3. Hewlett-Packard.- 5.4. McPherson.- 5.5. Perkin-Elmer.- 5.6. Physical Electronics.- 5.7. McCrone-RCI.- 5.8. Vacuum Generators, Inc..- 5.9. Varian.- 5.10. Others.- 3 Fundamental Concepts.- 1. Photoelectric Effect.- 2. Binding Energy.- 3. Final States and the Sudden Approximation.- 3.1. Spin-Orbit Splitting.- 3.2. Multiplet Splitting.- 3.3. Jahn-Teller Splitting.- 3.4. Electron Shakeoff and Shakeup.- 3.5. Configuration Interaction.- 3.6. Koopmans' Theorem and the Sudden Approximation.- 3.7. Vibrational and Rotational Final States.- 4. Atomic Wave Functions.- 5. Molecular Orbital Theory.- 5.1. Theoretical Models.- 5.1.1. Ab Initio Calculations.- 5.1.2. Semiempirical Calculations.- 5.2. Basis Set Extension and MO Mixing.- 5.3. Atomic and Molecular Orbital Nomenclature.- 5.3.1. Atoms.- 5.3.2. Molecules.- 4 Photoelectron Spectroscopy of the Outer Shells.- 1. Introduction.- 2. Energy Level Scheme.- 2.1. Binding Energy.- 2.2. Final States.- 2.2.1. Spin-Orbit Splitting.- 2.2.2. Multiplet Splitting due to Spin Coupling.- 2.2.3. Jahn-Teller Effect.- 2.2.4. Electron Shakeoff and Shakeup.- 2.2.5. Configuration Interaction.- 2.2.6. Resonance Absorption.- 2.2.7. Collision Peaks.- 3. Identification of the Orbital.- 3.1. Ionization Potentials.- 3.1.1. Characteristic Ionization Bands.- 3.1.2. Effects of Substituents.- 3.1.3. Sum Rule.- 3.1.4. The Perfluoro Effect.- 3.1.5. Dependence on Steric Effects.- 3.2. Identification of Orbitals by Vibrational Structure.- 3.3. Identification of Molecular Orbitals from Intensities of Ionization Bands.- 3.4. Identification of Molecular Orbitals by Angular Distribution.- 4. Comparison of PESOS with Other Experimental Data.- 4.1. Optical Spectroscopy.- 4.2. Mass Spectroscopy.- 5. Survey of the Literature on PESOS.- 5.1. Atoms.- 5.2. Diatomic Molecules.- 5.2.1. H2.- 5.2.2. N2 and CO.- 5.2.3. O2 and NO.- 5.2.4. Diatomic Molecules Containing Halogen.- 5.3. Triatomic Molecules.- 5.3.1. Linear Triatomic Molecules.- 5.3.2. Bent Triatomic Molecules.- 5.4. Organic Molecules.- 5.4.1. Methane, Alkanes, and Tetrahedral Symmetry.- 5.4.2. Unsaturated Aliphatics.- 5.4.3. Ring Compounds.- 5.4.4. Multiring Compounds.- 5.4.5. Organic Halides.- 5.4.6. Miscellaneous Organic Compounds Containing Oxygen, Nitrogen, Sulfur, and Phosphorus.- 5.5. Organometallics and Miscellaneous Inorganic Polyatomic Molecules.- 5.6. Ions, Transient Species, and Other Special Studies in PESOS.- 6. Studies on Solids.- 7. Analytical Applications of PESOS.- 5 Photoelectron Spectroscopy of the Inner Shells.- 1. Atomic Structure.- 2. Theoretical Basis of Chemical Shifts of Core Electrons.- 2.1. Valence Shell Potential Model.- 2.2. Effect of Neighboring Atoms.- 2.3. Calculation of Net Charge from Electronegativity.- 2.4. Calculation of Net Charge from Semiempirical MO.- 2.5. Use of Ab Initio Calculations for Chemical Shifts.- 2.6. Correlation of Chemical Shift with Thermochemical Data.- 3. Summary of Data on Chemical Shifts as a Function of the Periodic Table.- 3.1. Carbon.- 3.2. Nitrogen and Phosphorus.- 3.3. Sulfur and Oxygen.- 3.4. Group IIIA, IVA, VA, and VIA Elements.- 3.4.1. Group IIIA: B, Al, Ga, In, and Tl.- 3.4.2. Group IVA: C, Si, Ge, Sn, and Pb.- 3.4.3. Group VA: N, P, As, Sb, and Bi.- 3.4.4. Group VIA: O, S, Se, and Te.- 3.5. Halides and Rare Gases.- 3.6. Alkali Metals and Alkaline Earths.- 3.7. Transition Metals.- 3.7.1. First Transition Metal Series: Sc, Ti, V, Cr, Mn, Fe, Co, Ni.- 3.7.2. Second Transition Metal Series: Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd.- 3.7.3. Third Transition Metal Series: Hf, Ta, W, Re, Os, Ir, Pt.- 3.8. Groups IB and IIB: Cu, Ag, Au, Zn, Cd, Hg.- 3.9. Rare Earths and Actinides.- 4. Special Topics on Shifts in Core Binding Energies.- 4.1. Experimental and Interpretive Problems in PESIS.- 4.1.1. Comparative Problems in the Gas and Solid Phases.- 4.1.2. Charging.- 4.1.3. Definition of Binding Energy for Insulators.- 4.1.4. Binding Energy of Surface Atoms.- 4.1.5. Radiation Effects.- 4.1.6. Linewidths.- 4.2. Inorganic Compounds.- 4.2.1. Multiple Chemical Environment.- 4.2.2. Coordination Complexes.- 4.3. Organic Compounds.- 4.3.1. Resonance.- 4.3.2. Substituent Effects.- 4.3.3. Group Analysis.- 4.3.4. Specific Studies on Organic Molecules.- 4.4. Comparison of Core Electron Binding Energy Shifts with Other Physical Quantities.- 4.4.1. Mossbauer Isomer Shift.- 4.4.2. NMR.- 4.4.3. Other Physical Data.- 5. Other Applications of PESIS.- 5.1. Multicomponent Structure.- 5.1.1. Multiplet or Exchange Splitting.- 5.1.2. Electron Shakeoff and Shakeup.- 5.1.3. Configuration Interaction.- 5.1.4. Characteristic Energy Losses.- 5.1.5. Determining the Nature of Multicomponent Structure.- 5.2. PESIS for Surface Studies.- 5.3. Angular Studies with PESIS.- 6. Use of PESIS for Applied Research.- 6.1. PESIS as an Analytical Tool.- 6.2. Biological Systems.- 6.3. Geology.- 6.4. Environmental Studies.- 6.5. Surface Studies.- 6.6. Polymers and Alloys.- 6.7. Radiation Studies.- 6.8. Industrial Uses.- 6 Auger Electron Spectroscopy.- 1. Theory of the Auger Process.- 2. Comparison of the Auger Phenomenon with the Photoelectric Effect and X-Ray Emission.- 3. Use of Auger Spectroscopy for Gases.- 3.1. Atoms.- 3.2. Molecules.- 3.3. Study of Ionization Phenomena by Auger Spectroscopy.- 3.4. Autoionization.- 3.5. Auger Spectroscopy for Use in Gas Analysis.- 4. Use of Auger Spectroscopy in the Study of Solids.- 4.1. Special Problems Encountered on Using AES with Solids.- 4.1.1. Variables Concerned with Production of Auger Electrons.- 4.1.2. High-Energy Satellite Lines.- 4.1.3. Characteristic Energy Losses.- 4.1.4. Charging in Nonconducting Samples.- 4.2. High-Resolution Auger Spectroscopy with Solids.- 4.3. General Analytical Use of Auger Spectroscopy.- 4.4. Use of Auger Spectroscopy in the Study of Surfaces.- 4.4.1. General Considerations.- 4.4.2. Literature Survey of Surface Applications.- 4.5. Other Methods for Surface Analysis.- 4.5.1. Comparison of PESIS and Auger Spectroscopy for Surface Studies.- 4.5.2. Methods of Surface Analysis Other than AES and PESIS.- Appendixes.- 1. Atomic Binding Energies for Each Subshell for Elements Z = 1-106.- 3. Compilation of Data on Shifts in Core Binding Energies.- 4. Acronyms and Definitions of Special Interest in Electron Spectroscopy.- References.

read more

Citations
More filters
Journal ArticleDOI

Angle-resolved photoemission studies of the cuprate superconductors

TL;DR: A review of the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds is presented in this article, with the purpose of providing an updated summary of the extensive literature.
Journal ArticleDOI

Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction.

TL;DR: The first application of a new COF material, COF-LZU1, for highly efficient catalysis, which possesses a two-dimensional eclipsed layered-sheet structure, making its incorporation with metal ions feasible.

PENELOPE-2006: A Code System for Monte Carlo Simulation of Electron and Photon Transport

TL;DR: The PENELOPE as mentioned in this paper computer code system performs Monte Carlo simulation of coupled electron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV to about 1 GeV.
Book

Physics at Surfaces

TL;DR: Physics at Surfaces as discussed by the authors is a unique graduate-level introduction to the physics and chemical physics of solid surfaces and atoms and molecules that interact with solid surfaces, and it provides a synthesis of the entire field of surface physics from the perspective of a modern condensed matter physicist with a healthy interest in chemical physics.
Journal ArticleDOI

Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO 2 precipitation

TL;DR: In this article, the authors calculated the X-ray photoelectron spectra (XPS) of Mn 21,M n 31, and Mn 41 free ions and showed that these ions adopt high spin states in MnO, manganite, and birnessite.
References
More filters
Journal ArticleDOI

Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms

TL;DR: In this paper, Fock's Naherungsmethode zur Behandung des quantenmechanischen Mehrelektronenproblems aufgestellten Gleichungen werden auf etwas allgemeinerer Grundlage diskutiert.
Journal ArticleDOI

Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV.

TL;DR: In this article, the results of photoelectric cross-sections for the Kα lines of magnesium at 1254 eV and of aluminum at 1487 eV were given for Z values up to 96.
Journal ArticleDOI

Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt

Albert Einstein
- 01 Jan 1905 - 
TL;DR: In el marco del Proyecto subvencionado by the Fundación Antorchas (FAN) as mentioned in this paper, el material was digitalizado, e.g., en la Biblioteca del Departamento de Fisica de la Facultad de Ciencias Exactas de la Universidad Nacional de La Plata.
Journal ArticleDOI

X-Ray Fluorescence Yields, Auger, and Coster-Kronig Transition Probabilities

TL;DR: The present status of the field of fluorescence yields, radiationless (Auger and Coster-Kronig) and radiative transition probabilities is summarized in this article, where experimental and theoretical results are included, and tables of best values of important quantities are presented.