scispace - formally typeset
Open AccessJournal ArticleDOI

Phytohormones regulate accumulation of osmolytes under abiotic stress.

Reads0
Chats0
TLDR
The underlying mechanisms of phytohormone-regulated osmolyte accumulation along with their various functions in plants under stress conditions are discussed.
Abstract
Plants face a variety of abiotic stresses, which generate reactive oxygen species (ROS), and ultimately obstruct normal growth and development of plants. To prevent cellular damage caused by oxidative stress, plants accumulate certain compatible solutes known as osmolytes to safeguard the cellular machinery. The most common osmolytes that play crucial role in osmoregulation are proline, glycine-betaine, polyamines, and sugars. These compounds stabilize the osmotic differences between surroundings of cell and the cytosol. Besides, they also protect the plant cells from oxidative stress by inhibiting the production of harmful ROS like hydroxyl ions, superoxide ions, hydrogen peroxide, and other free radicals. The accumulation of osmolytes is further modulated by phytohormones like abscisic acid, brassinosteroids, cytokinins, ethylene, jasmonates, and salicylic acid. It is thus important to understand the mechanisms regulating the phytohormone-mediated accumulation of osmolytes in plants during abiotic stresses. In this review, we have discussed the underlying mechanisms of phytohormone-regulated osmolyte accumulation along with their various functions in plants under stress conditions.

read more

Citations
More filters
Journal ArticleDOI

Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects.

TL;DR: In this paper, the authors have discussed the sophisticated adaptation mechanisms and regularity network that improves the water stress tolerance and adaptation in plants, including growth pattern and structural dynamics, reduction in transpiration loss through altering stomatal conductance and distribution, leaf rolling, root-to-shoot ratio dynamics, root length increment, accumulation of compatible solutes, enhancement of transpiration efficiency, osmotic and hormonal regulation, and delayed senescence.
Journal ArticleDOI

Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions.

TL;DR: The present review discusses the L-proline accumulation, metabolism, signaling, transport and regulation in the plants, and discusses the effects of exogenous L-Proline during different environmental conditions.
Journal ArticleDOI

Treatment of Sweet Pepper with Stress Tolerance-Inducing Compounds Alleviates Salinity Stress Oxidative Damage by Mediating the Physio-Biochemical Activities and Antioxidant Systems

TL;DR: In this article, the influence of salicylic acid (1 mM), yeast extract (6 g L−1), and proline (10 mM) on the physiological and biochemical parameters of sweet pepper plants under saline conditions (2000 and 4000 ppm).
References
More filters
Journal ArticleDOI

Roles of glycine betaine and proline in improving plant abiotic stress resistance

TL;DR: In this review article, numerous examples of successful application of these compounds to improve plant stress tolerance are presented and a better understanding of the mechanisms of action of exogenously applied GB and proline is expected to aid their effective utilization in crop production in stress environments.
Journal ArticleDOI

Plant salt tolerance

TL;DR: A recently discovered halophytic plant species, Thellungiella halophila, now promises to help in the detection of new tolerance determinants and operating pathways in a model system that is not limited to Arabidopsis traits or ecotype variations.
Book

Ethylene in plant biology

TL;DR: This book discusses Ethylene Analysis and Properties of the Gas, the Role of Ethylene in Agriculture, and Roles and Physiological Effects ofEthylene in Plant Physiology: Dormancy, Growth and Development.
Journal ArticleDOI

Proline: a multifunctional amino acid

TL;DR: The compartmentalization of proline biosynthesis, accumulation and degradation in the cytosol, chloroplast and mitochondria is discussed and the role of prolines in cellular homeostasis, including redox balance and energy status, is described.

Ethylene in Plant Biology

TL;DR: This book discusses Ethylene Analysis and Properties of the Gas, the Role of Ethylene in Agriculture, and Roles and Physiological Effects ofEthylene in Plant Physiology: Dormancy, Growth and Development.
Related Papers (5)
Trending Questions (1)
How osmolyte regulate ion homeostasis under stress in plant a case study?

Osmolytes help regulate ion homeostasis under stress in plants by stabilizing osmotic differences between the cell surroundings and cytosol.