scispace - formally typeset
Journal ArticleDOI

Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles

Kandler Smith, +1 more
- 29 Sep 2006 - 
- Vol. 160, Iss: 1, pp 662-673
Reads0
Chats0
TLDR
In this article, a 1D electrochemical, lumped thermal model is used to explore pulse power limitations and thermal behavior of a 6Ah, 72 cell, 276 V nominal Li-ion hybrid-electric vehicle (HEV) battery pack.
About
This article is published in Journal of Power Sources.The article was published on 2006-09-29. It has received 643 citations till now. The article focuses on the topics: State of charge & Battery pack.

read more

Citations
More filters
Journal ArticleDOI

Thermal runaway caused fire and explosion of lithium ion battery

TL;DR: In this paper, a review of the lithium ion battery hazards, thermal runaway theory, basic reactions, thermal models, simulations and experimental works is presented, and the related prevention techniques are summarized and discussed on the inherent safety methods and safety device methods.
Journal ArticleDOI

A Critical Review of Thermal Issues in Lithium-Ion Batteries

TL;DR: A critical review of the available literature on the major thermal issues for lithium-ion batteries is presented in this article, where specific attention is paid to the effects of temperature and thermal management on capacity/power fade, thermal runaway, and pack electrical imbalance.
Journal ArticleDOI

Development and challenges of LiFePO4 cathode material for lithium-ion batteries

TL;DR: LiFePO4 is a competitive candidate of cathode material for the next generation of a green and sustainable lithium-ion battery system due to its long life span, abundant resources, low toxicity, and high thermal stability.
Journal ArticleDOI

A review of power battery thermal energy management

TL;DR: In this paper, the development of clean vehicles, including pure electric vehicles (EVs), hybrid vehicles (HEVs), and fuel cell electric vehicle (FCEVs) and high energy power batteries, such as nickel metal hydride (Ni-MH), lithium-ion (Li-ion) and proton exchange membrane fuel cells (PEMFCs), are discussed and compared.
Journal ArticleDOI

Layered vanadium and molybdenum oxides: batteries and electrochromics

TL;DR: The layered oxides of vanadium and molybdenum have been studied for close to 40 years as possible cathode materials for lithium batteries or electrochromic systems as mentioned in this paper.
References
More filters
Journal ArticleDOI

Lithium Batteries and Cathode Materials

TL;DR: This paper will describe lithium batteries in more detail, building an overall foundation for the papers that follow which describe specific components in some depth and usually with an emphasis on the materials behavior.
Journal ArticleDOI

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell

TL;DR: In this article, the galvanostatic charge and discharge of a lithium anode/solid polymer separator/insertion cathode cell is modeled using concentrated solution theory, which is general enough to include a wide range of polymeric separator materials, lithium salts, and composite insertion cathodes.
Journal ArticleDOI

Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation

TL;DR: In this article, extended Kalman filtering (EKF) is used to estimate battery state-of-charge, power fade, capacity fade, and instantaneous available power for hybrid-electric-vehicle battery packs.
Journal ArticleDOI

Simulation and Optimization of the Dual Lithium Ion Insertion Cell

TL;DR: In this article, the galvanostatic charge and discharge of a dual lithium ion insertion (rocking chair) cell are modeled with concentrated solution theory, and the insertion of lithium into and out of active electrode material is simulated using superposition, greatly simplifying the numerical calculations.
Book

Marks' Standard Handbook for Mechanical Engineers

TL;DR: The preface to the first edition of Symbols and ABBREVIATIONS outlines the aims and objectives of the second edition, which aims to provide a “robust” discussion of the history and future prospects of dynamical engineering.
Related Papers (5)