scispace - formally typeset
Open AccessJournal ArticleDOI

Purification, characterization and redox properties of hydrogenase from Methanosarcina barkeri (DSM 800).

TLDR
A soluble hydrogenase from the methanogenic bacterium, Methanosarcina barkeri has been purified to apparent electrophoretic homogeneity, with an overall 550-fold purification, a 45% yield and a final specific activity of 270 mumol H2 evolved min-1 (mg protein)-1.
Abstract
A soluble hydrogenase from the methanogenic bacterium, Methanosarcina barkeri (DSM 800) has been purified to apparent electrophoretic homogeneity, with an overall 550-fold purification, a 45% yield and a final specific activity of 270 mumol H2 evolved min-1 (mg protein)-1. The hydrogenase has a high molecular mass of approximately equal to 800 kDa and subunits with molecular masses of approximately equal to 60 kDa. The enzyme is stable to heating at 65 degrees C and to exposure to air at 4 degrees C in the oxidized state for periods up to a week. The overall stability of this enzyme is compared with other hydrogenase isolated from strict anaerobic sulfate-reducing bacteria. Ms. barkeri hydrogenase shows an absorption spectrum typical of a non-heme iron protein with maxima at 275 nm, 380 nm and 405 nm. A flavin component, identified as FMN or riboflavin was extracted under acidic conditions and quantified to approximately one flavin molecule per subunit. In addition to this component, 8-10 iron atoms and 0.6-0.8 nickel atom were also detected per subunit. The electron paramagnetic resonance (EPR) spectrum of the native enzyme shows a rhombic signal with g values at 2.24, 2.20 and approximately equal to 2.0. probably due to nickel which is optimally measured at 40 K but still detectable at 77 K. In the reduced state, using dithionite or molecular hydrogen as reductants, at least two types of g = 1.94 EPR signals, due to iron-sulfur centers, could be detected and differentiated on the basis of power and temperature dependence. Center I has g values at 2.04, 1.90 and 1.86, while center II has g values at 2.08, 1.93 and 1.85. When the hydrogenase is reduced by hydrogen or dithionite the rhombic EPR species disappears and is replaced by other EPR-active species with g values at 2.33, 2.23, 2.12, 2.09, 2.04 and 2.00. These complex signals may represent different nickel species and are only observable at temperatures higher than 20 K. In the native preparation, at high temperatures (T greater than 35 K) or in partially reduced samples, a free radical due to the flavin moiety is observed. The EPR spectrum of reduced hydrogenase in 80% Me2SO presents an axial type of spectrum only detectable below 30 K.

read more

Citations
More filters
Journal ArticleDOI

The structure and mechanism of iron-hydrogenases

TL;DR: Mechanisms of H2 activation and electron transfer are proposed to explain the effects of CO binding and the ability of one of the hydrogenases to preferentially catalyze H2 oxidation and H2 production.
Journal ArticleDOI

Nickel hydrogenases: in search of the active site.

TL;DR: This dissertation aims to provide a history of web exceptionalism from 1989 to 2002, a period chosen in order to explore its roots as well as specific cases up to and including the year in which descriptions of “Web 2.0” began to circulate.
Journal ArticleDOI

Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus.

TL;DR: The archaebacterium, Pyrococcus furiosus, grows optimally at 100 degrees C by a fermentative type metabolism in which H2 and CO2 are the only detectable products and appears to represent a new type of "evolution" hydrogenase, which catalyzes H2 production at all temperatures examined.
Journal ArticleDOI

The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio

TL;DR: Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfovibrio and it is suggested that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues.
References
More filters
Journal Article

Protein Measurement with the Folin Phenol Reagent

TL;DR: Procedures are described for measuring protein in solution or after precipitation with acids or other agents, and for the determination of as little as 0.2 gamma of protein.
Journal ArticleDOI

The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis

TL;DR: The results show that the polyacrylamide gel electrophoresis method can be used with great confidence to determine the molecular weights of polypeptide chains for a wide variety of proteins.
Journal ArticleDOI

Disc electrophoresis – ii method and application to human serum proteins*

TL;DR: The technique of disc electrophoresis has been presented, including a discussion of the technical variables with special reference to the separation of protein fractions of normal human serum.
Related Papers (5)