scispace - formally typeset
Open AccessJournal ArticleDOI

Quantum Entanglement of High Angular Momenta

TLDR
A method for converting the polarization state of photons into information encoded into spatial modes of a single photon is presented and entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.
Abstract
Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

read more

Citations
More filters
Journal ArticleDOI

Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction

TL;DR: In this paper, the authors demonstrated ultrathin, broadband, and highly efficient metamaterial-based terahertz polarization converters that are capable of rotating a linear polarization state into its orthogonal one.
Journal ArticleDOI

Arbitrary spin-to–orbital angular momentum conversion of light

TL;DR: A metasurface converter for optical states that transforms polarization states into optical angular momentum states and illustrates a general material-mediated connection between SAM and OAM of light and may find applications in producing complex structured light and in optical communication.
Journal ArticleDOI

Detection of a Spinning Object Using Light’s Orbital Angular Momentum

TL;DR: Using twisted light, Lavery et al. detected rotation with an analogous angular Doppler shift, which may be useful for remote sensing and observational astronomy, and the multiplicative enhancement of the frequency shift may have applications for the remote detection of rotating bodies in both terrestrial and astronomical settings.
Journal ArticleDOI

Quantum teleportation of multiple degrees of freedom of a single photon

TL;DR: This work uses photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develops a method to project and discriminate hyper-ENTangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees offreedom.
Journal ArticleDOI

Orbital angular momentum 25 years on [Invited]

TL;DR: A brief review of the research in the field to date is examined and what future directions might hold is considered.
References
More filters
Journal ArticleDOI

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

TL;DR: Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that one is led to conclude that the description of reality as given by a wave function is not complete.
Journal ArticleDOI

On the Einstein-Podolsky-Rosen paradox

TL;DR: In this article, it was shown that even without such a separability or locality requirement, no hidden variable interpretation of quantum mechanics is possible and that such an interpretation has a grossly nonlocal structure, which is characteristic of any such theory which reproduces exactly the quantum mechanical predictions.
Journal ArticleDOI

Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes.

TL;DR: Laser light with a Laguerre-Gaussian amplitude distribution is found to have a well-defined orbital angular momentum and an astigmatic optical system may be used to transform a high-order LaguERre- Gaussian mode into aHigh-order Hermite-Gaussia mode reversibly.
Journal ArticleDOI

Entanglement of the orbital angular momentum states of photons

TL;DR: This work demonstrates entanglement involving the spatial modes of the electromagnetic field carrying orbital angular momentum, which provides a practical route to entangled states that involves many orthogonal quantum states, rather than just two Multi-dimensional entangled states could be of considerable importance in the field of quantum information, enabling, for example, more efficient use of communication channels in quantum cryptography.
Journal ArticleDOI

Entanglement of Orbital Angular Momentum States of Photons

TL;DR: In this article, the orbital angular momentum of photons is exploited to achieve multi-dimensional entanglement in higher dimensions, i.e., the state of the electromagnetic field with phase singularities (doughnut modes).
Related Papers (5)