scispace - formally typeset
Open AccessJournal ArticleDOI

Quantum metrology

TLDR
It is proved that the typical quantum precision enhancement is of the order of the square root of the number of times the system is sampled, and it is pointed out the different strategies that permit one to attain this bound.
Abstract
We point out a general framework that encompasses most cases in which quantum effects enable an increase in precision when estimating a parameter (quantum metrology) The typical quantum precision-enhancement is of the order of the square root of the number of times the system is sampled We prove that this is optimal and we point out the different strategies (classical and quantum) that permit to attain this bound

read more

Citations
More filters
Journal ArticleDOI

Advances in quantum metrology

TL;DR: Quantum metrology is the use of quantum techniques such as entanglement to yield higher statistical precision than purely classical approaches as discussed by the authors, where the central limit theorem implies that the reduction is proportional to the square root of the number of repetitions.
Journal ArticleDOI

Photonic quantum technologies

TL;DR: The first quantum technology that harnesses quantum mechanical effects for its core operation has arrived in the form of commercially available quantum key distribution systems as mentioned in this paper, which achieves enhanced security by encoding information in photons such that an eavesdropper in the system can be detected.
Journal ArticleDOI

Quantum sensing

Abstract: "Quantum sensing" describes the use of a quantum system, quantum properties or quantum phenomena to perform a measurement of a physical quantity Historical examples of quantum sensors include magnetometers based on superconducting quantum interference devices and atomic vapors, or atomic clocks More recently, quantum sensing has become a distinct and rapidly growing branch of research within the area of quantum science and technology, with the most common platforms being spin qubits, trapped ions and flux qubits The field is expected to provide new opportunities - especially with regard to high sensitivity and precision - in applied physics and other areas of science In this review, we provide an introduction to the basic principles, methods and concepts of quantum sensing from the viewpoint of the interested experimentalist
Journal ArticleDOI

The classical-quantum boundary for correlations: Discord and related measures

TL;DR: Different methods for quantifying the quantum and classical parts of correlations are among the more actively studied topics of quantum-information theory over the past decade as mentioned in this paper and different notions of classical and quantum correlations quantified by quantum discord and other related measures are reviewed.
References
More filters
Journal ArticleDOI

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

TL;DR: Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that one is led to conclude that the description of reality as given by a wave function is not complete.
Book ChapterDOI

Optical Coherence Tomography

TL;DR: Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease as mentioned in this paper, where OCT is an interferometric technique that detects reflected and backscattered light from tissue.
Journal ArticleDOI

Measurement of subpicosecond time intervals between two photons by interference.

TL;DR: A fourth-order interference technique has been used to measure the time intervals between two photons, and by implication the length of the photon wave packet, produced in the process of parametric down-conversion.
Journal ArticleDOI

Quantum Mechanical Noise in an Interferometer

TL;DR: In this article, the authors proposed a new technique, the squeezed-state technique, that allows one to decrease the photon-counting error while increasing the radiation pressure error, or vice versa.
Journal ArticleDOI

Quantum-enhanced measurements: beating the standard quantum limit.

TL;DR: This work has shown that conventional bounds to the precision of measurements such as the shot noise limit or the standard quantum limit are not as fundamental as the Heisenberg limits and can be beaten using quantum strategies that employ “quantum tricks” such as squeezing and entanglement.
Related Papers (5)