scispace - formally typeset
Search or ask a question
Institution

Nest Labs

About: Nest Labs is a based out in . It is known for research contribution in the topics: Graphene & Terahertz radiation. The organization has 1230 authors who have published 3104 publications receiving 108440 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.
Abstract: Krabbe disease (KD) is a neurodegenerative disorder caused by the lack of β- galactosylceramidase enzymatic activity and by widespread accumulation of the cytotoxic galactosyl-sphingosine in neuronal, myelinating and endothelial cells. Despite the wide use of Twitcher mice as experimental model for KD, the ultrastructure of this model is partial and mainly addressing peripheral nerves. More details are requested to elucidate the basis of the motor defects, which are the first to appear during KD onset. Here we use transmission electron microscopy (TEM) to focus on the alterations produced by KD in the lower motor system at postnatal day 15 (P15), a nearly asymptomatic stage, and in the juvenile P30 mouse. We find mild effects on motorneuron soma, severe ones on sciatic nerves and very severe effects on nerve terminals and neuromuscular junctions at P30, with peripheral damage being already detectable at P15. Finally, we find that the gastrocnemius muscle undergoes atrophy and structural changes that are independent of denervation at P15. Our data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.

10,233 citations

Journal ArticleDOI
TL;DR: An overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of differentTwo-dimensional crystals or of two- dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides are provided.
Abstract: Graphene and other two-dimensional materials, such as transition metal dichalcogenides, have rapidly established themselves as intriguing building blocks for optoelectronic applications, with a strong focus on various photodetection platforms The versatility of these material systems enables their application in areas including ultrafast and ultrasensitive detection of light in the ultraviolet, visible, infrared and terahertz frequency ranges These detectors can be integrated with other photonic components based on the same material, as well as with silicon photonic and electronic technologies Here, we provide an overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of different two-dimensional crystals or of two-dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides

3,025 citations

Journal ArticleDOI
TL;DR: Quantum metrology is the use of quantum techniques such as entanglement to yield higher statistical precision than purely classical approaches as discussed by the authors, where the central limit theorem implies that the reduction is proportional to the square root of the number of repetitions.
Abstract: The statistical error in any estimation can be reduced by repeating the measurement and averaging the results. The central limit theorem implies that the reduction is proportional to the square root of the number of repetitions. Quantum metrology is the use of quantum techniques such as entanglement to yield higher statistical precision than purely classical approaches. In this Review, we analyse some of the most promising recent developments of this research field and point out some of the new experiments. We then look at one of the major new trends of the field: analyses of the effects of noise and experimental imperfections.

2,977 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
09 May 2002-Nature
TL;DR: A monolithic terahertz injection laser that is based on interminiband transitions in the conduction band of a semiconductor (GaAs/AlGaAs) heterostructure is reported, which is very promising for extending the present laser concept to continuous-wave and high-temperature operation, which would lead to implementation in practical photonic systems.
Abstract: Semiconductor devices have become indispensable for generating electromagnetic radiation in everyday applications. Visible and infrared diode lasers are at the core of information technology, and at the other end of the spectrum, microwave and radio-frequency emitters enable wireless communications. But the terahertz region (1-10 THz; 1 THz = 10(12) Hz) between these ranges has remained largely underdeveloped, despite the identification of various possible applications--for example, chemical detection, astronomy and medical imaging. Progress in this area has been hampered by the lack of compact, low-consumption, solid-state terahertz sources. Here we report a monolithic terahertz injection laser that is based on interminiband transitions in the conduction band of a semiconductor (GaAs/AlGaAs) heterostructure. The prototype demonstrated emits a single mode at 4.4 THz, and already shows high output powers of more than 2 mW with low threshold current densities of about a few hundred A cm(-2) up to 50 K. These results are very promising for extending the present laser concept to continuous-wave and high-temperature operation, which would lead to implementation in practical photonic systems.

2,425 citations


Authors

Showing all 1230 results

NameH-indexPapersCitations
John F. Thompson132142095894
Richard A. Scolyer9673637453
Peter Hersey9039937026
David A. Ritchie84155541123
Mauro Giacca8443923811
Sean Ekins7039415655
Andrew J. Sinclair6834115906
Daniel P. W. Ellis6735520791
Edmund H. Linfield6686124885
Sauro Succi6564420559
Andrea Mari6425714863
Marco Polini6329421022
Vittorio Giovannetti6340120299
Qiang Sun6345515609
Graham J. Mann6126817331
Network Information
Related Institutions (5)
National University of Singapore
165.4K papers, 5.4M citations

86% related

University of Southampton
99.4K papers, 3.4M citations

85% related

Technische Universität München
123.4K papers, 4M citations

85% related

Tel Aviv University
115.9K papers, 3.9M citations

85% related

Cornell University
235.5K papers, 12.2M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20225
2021193
2020256
2019219
2018199
2017217