scispace - formally typeset
Journal ArticleDOI

Raman Spectroscopy—A Prospective Tool in the Life Sciences

Reads0
Chats0
TLDR
The bulk of the review highlights recent applications of Raman spectroscopy, including structural investigations of a hormone receptor, testing the biocompatibility of dental implants, probing soil components and plant tissue alkaloids, and localization of single bacteria.
Abstract
Although the physics of Raman spectroscopy and its application to purely chemical problems is long established, it offers a noninvasive, nondestructive, and water-insensitive probe to problems in the life sciences. Starting from the principles of Raman spectroscopy, its advantages, and methods for signal enhancement, the bulk of the review highlights recent applications. Structural investigations of a hormone receptor, testing the biocompatibility of dental implants, probing soil components and plant tissue alkaloids, and localization of single bacteria are just four problems in which Raman spectroscopy offers a solution or complements existing methods.

read more

Citations
More filters
Journal ArticleDOI

Nanostructures in Biodiagnostics

TL;DR: Nathaniel L. Rosi focuses on the rational assembly of DNA-modified nanostructures into larger-scale materials and their roles in biodiagnostic screening for nucleic acids.
Journal ArticleDOI

Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications

TL;DR: Of all the possible nanoparticle shapes, gold nanorods are especially intriguing as they offer strong plasmonic fields while exhibiting excellent tunability and biocompatibility, according to a review of their radiative and nonradiative properties.
Journal ArticleDOI

Can graphene be used as a substrate for Raman enhancement

TL;DR: It is observed that the intensities of the Raman signals on monolayer graphene are much stronger than on a SiO(2)/Si substrate, indicating a clear Raman enhancement effect on the surface of monolayers graphene.
Journal ArticleDOI

Identification and quantification of valuable plant substances by IR and Raman spectroscopy

TL;DR: In this article, a review of infrared and Raman spectroscopic methods applied to the analysis of valuable plant substances or quality parameters in horticultural and agricultural crops is presented.
Journal ArticleDOI

SERS: a versatile tool in chemical and biochemical diagnostics

TL;DR: In this review, recent developments in SERS spectroscopy are discussed and their impact on different research fields are discussed.
References
More filters
Journal ArticleDOI

Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering

TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Journal ArticleDOI

Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

TL;DR: In this article, the first observation of single molecule Raman scattering was made using a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about $2.
Journal ArticleDOI

Raman spectra of pyridine adsorbed at a silver electrode

TL;DR: In this article, Ramaman spectroscopy has been employed for the first time to study the role of adsorption at electrodes, and it has been possible to distinguish two types of pyridine adaption at a silver electrode.
Journal ArticleDOI

Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor

TL;DR: This article determined the structure of rhodopsin from diffraction data extending to 2.8 angstroms resolution and found that the highly organized structure in the extracellular region, including a conserved disulfide bridge, forms a basis for the arrangement of the sevenhelix transmembrane motif.
Journal ArticleDOI

Ultrasensitive Chemical Analysis by Raman Spectroscopy

TL;DR: The spontaneous Raman effect, in the following simply called Raman scattering, is focused on, which can be applied noninvasively under ambient conditions in almost every environment and has special importance for ultrasensitive Raman spectroscopy at the singlemolecule level.
Related Papers (5)