scispace - formally typeset
Open AccessJournal ArticleDOI

Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions

TLDR
This study demonstrates for the first time the permanent disposal of CO2 as environmentally benign carbonate minerals in basaltic rocks and demonstrates that the safe long-term storage of anthropogenic CO2 emissions through mineralization can be far faster than previously postulated.
Abstract
Carbon capture and storage (CCS) provides a solution toward decarbonization of the global economy. The success of this solution depends on the ability to safely and permanently store CO2. This study demonstrates for the first time the permanent disposal of CO2 as environmentally benign carbonate minerals in basaltic rocks. We find that over 95% of the CO2 injected into the CarbFix site in Iceland was mineralized to carbonate minerals in less than 2 years. This result contrasts with the common view that the immobilization of CO2 as carbonate minerals within geologic reservoirs takes several hundreds to thousands of years. Our results, therefore, demonstrate that the safe long-term storage of anthropogenic CO2 emissions through mineralization can be far faster than previously postulated.

read more

Content maybe subject to copyright    Report

!
1!
Rapid&carbon&mineralization&for&permanent&disposal&of&anthropogenic&carbon&dioxide&1!
emissions&2!
!"#$%&'(&')**#$
+,-.
,
&
')$*/0&1*"*#
-
,&1)02$)&3(&104567$0829**/$
:
,&;$/<&=(&>#?@#$8
:,A,B
,&3!
1/%"$2"$&C(&D/8?)890
:
,&;22)&1(&E$)29**/$
F
,&G#$%"$&1/%H"8890
F,I
,&J0%K/&D"00)$8890
F
,&4!
=9?LH$/2"$&1/%"$2)$29**/$
F
,&;/0)$&D"00?)"%8890
F
,&D"20/&EM#?8890
N
,&=#?%/&E(&E?H$#28890
:
,!5!
O9L#0/@&P9?HHQG9#0/8<R
:,S
,&T/H?9L&'#8H/0
:
,&O/)0)&U#$0)02#V&2#&?)&C#%"#$)&W)X)
-
,&6!
!#00/H#$&=)??
-
,&T0"2&O/2#$/@8#0
+Y
,&P)??)<#&1(&G$9#<@#$
-&
7!
&8!
+
><#)0&)02&;)$*R&1</#0<#,&Z0/K#$8/*X&9H&19"*R)L[*90,&ZT&9!
-
\)L90*QO9R#$*X&;)$*R&>58#$K)*9$X,&]9?"L5/)&Z0/K#$8/*X,&Z1E&10!
:
J08*/*"*#&9H&;)$*R&1</#0<#8,&Z0/K#$8/*X&9H&J<#?)02,&J<#?)02&11!
A
]^C1_Z'C&BBF:,&Z0/K#$8/*`&a)"?&1)5)*/#$,&U$)0<#&12!
B
;)$*R&1</#0<#,&Z0/K#$8/*X&]9??#%#&\90290,&ZT&13!
F
C#X@6)K/@&;0#$%X,&J<#?)02&14!
I
;"$9[#)0&]9LL/88/90,&!9/0*&C#8#)$<R&]#0*#$,&J08*/*"*#&H9$&;0#$%X&)02&W$)08[9$*,&15!
a#**#0,&WR#&^#*R#$?)028&16!
N
J<#?)02&D#91"$K#X,&C#X@6)K/@,&J<#?)02&17!
S
O#[)$*L#0*&9H&E[[?/#2&D#9?9%X,&]"$*/0&Z0/K#$8/*X,&a#$*R,&P#8*#$0&E"8*$)?/)&18!
+Y
^)09Q1</#0<#&]#0*#$,&O#[)$*L#0*&9H&]R#L/8*$X,&Z0/K#$8/*X&9H&]9[#0R)%#0,&O#0L)$@&19!
&20!
Carbon&capture&and&storage&(CCS)&provides&a&solution&towards&decarbonization&of&the&21!
global&economy.&The&success&of&this&solution&depends&on&the&ability&to&safely&and&22!

!
2!
permanently&store&CO
2
.&This&study&demonstrates&for&the&first&time&the&permanent&23!
disposal&of&CO
2
&as&environmentally&benign&carbonate&minerals&in&basaltic&rocks.&We&24!
find&that&over&95%&of&the&CO
2
&injected&into&the&CarbFix&site&in&Iceland&was&mineralized&25!
to&carbonate&minerals&in&less&than&two&years.&This&result&contrasts&with&the&common&26!
view&that&the&immobilization&of&CO
2
&as&carbonate&minerals&within&geologic&reservoirs&27!
takes&several&hundreds&to&thousands&of&years.&Our&results,&therefore,&demonstrate&28!
that&the&safe&long-term&storage&of&anthropogenic&CO
2
&emissions&through&29!
mineralization&can&be&far&faster&than&previously&postulated.&&30!
&31!
WR#&8"<<#88&9H&%#9?9%/<&]>
-
&8*9$)%#&2#[#028&90&/*8&?90%Q*#$L&8#<"$/*X&)02&["5?/<&32!
)<<#[*)0<#&/0&)22/*/90&*9&$#%"?)*9$X,&[9?/<X,&)02&#<909L/<)?&H)<*9$8&b1c(&]>
-
&)02&5$/0#&33!
?#)@)%#&*R$9"%R&)&<90H/0/0%&8X8*#L&)59K#&*R#&8*9$)%#&$#8#$K9/$&9$&*R$9"%R&)5)0290#2&34!
d#??8&/8&<908/2#$#2&)8&90#&9H&*R#&L)69$&<R)??#0%#8&)889</)*#2&d/*R&%#9?9%/<&]>
-
&8*9$)%#&35!
e#(%(&b2,$3,$4cf(&\#)@)%#&$)*#8&/0*9&*R#&)*L98[R#$#&9H&gY(+h&)$#&$#i"/$#2&*9&#08"$#&36!
#HH#<*/K#&<?/L)*#&<R)0%#&L/*/%)*/90&e#(%(&b5,$6cf(&W9&)K9/2&&]>
-
&?#)@)%#,&<)[$9<@&/0*#%$/*X&37!
0##28&*9&5#&#K)?")*#2&)02&L90/*9$#2&b7c(&&\#)@)%#&$/8@&/8&H"$*R#$&#0R)0<#2&5X&/02"<#2&38!
8#/8L/</*X,&dR/<R&L)X&9[#0&H?"/2&H?9d&[)*Rd)X8&/0&*R#&<)[$9<@&b8c(&'/0#$)?&39!
<)$590)*/V)*/90&b/(#(&*R#&<90K#$8/90&9H&]>
-
&*9&<)$590)*#&L/0#$)?8c&K/)&]>
-
QH?"/2Q$9<@&40!
$#)<*/908&/0&*R#&$#8#$K9/$&L/0/L/V#8&*R#&$/8@&9H&?#)@)%#&)02&*R"8&H)</?/*)*#8&?90%Q*#$L&41!
)02&8)H#&<)$590&8*9$)%#&)02&["5?/<&)<<#[*)0<#&b9c(&WR#&[9*#0*/)?&H9$&<)$590)*/V)*/90&/8,&42!
R9d#K#$,&?/L/*#2&/0&<90K#0*/90)?&]>
-
&8*9$)%#&$#8#$K9/$8&8"<R&)8&2##[&8)?/0#&)i"/H#$8,&43!
)02&2#[?#*#2&9/?&)02&%)8&$#8#$K9/$8&/0&8#2/L#0*)$X&5)8/08&2"#&*9&*R#&?)<@&9H&<)?</"L,&44!

!
3!
L)%0#8/"L&)02&/$90&$/<R&8/?/<)*#&L/0#$)?8&$#i"/$#2&*9&H9$L&<)$590)*#&L/0#$)?8&b10,$11c(&45!
E0&)?*#$0)*/K#&/8&*9&/06#<*&]>
-
&/0*9&5)8)?*/<&$9<@8,&dR/<R&<90*)/0&"[&*9&-Bh&5X&d#/%R*&9H&46!
<)?</"L,&L)%0#8/"L&)02&/$90(&&G)8)?*/<&$9<@8&)$#&R/%R?X&$#)<*/K#,&)02&90#&9H&*R#&L98*&47!
<9LL90&$9<@&*X[#8&90&;)$*R,&<9K#$/0%&j+Yh&9H&<90*/0#0*)?&8"$H)<#&)$#)&)02&L98*&9H&*R#&48!
9<#)0&H?99$&e#(%(&b12,&13cf(&&49!
&&50!
WR#&])$5U/M&[/?9*&[$96#<*&d)8&2#8/%0#2&*9&[$9L9*#&)02&K#$/HX&in$situ&]>
-
&L/0#$)?/V)*/90&51!
/0&5)8)?*/<&$9<@8&H9$&*R#&[#$L)0#0*&2/8[98)?&9H&)0*R$9[9%#0/<&]>
-
&#L/88/908&b14c(&Wd9&52!
/06#<*/90&*#8*8&d#$#&[#$H9$L#2&)*&*R#&])$5U/M&/06#<*/90&8/*#&0#)$&*R#&=#??/8R#/2/&53!
%#9*R#$L)?&[9d#$&[?)0*k&aR)8#&Jk&+IB&*908&9H&["$#&]>
-
&H$9L&!)0")$X&*9&')$<R&-Y+-,&)02&54!
aR)8#&JJk&I:&*908&9H&)&]>
-
Q=
-
1&%)8&L/M*"$#&/0&!"0#&*9&E"%"8*&-Y+-,&9H&dR/<R&BB&*908&d#$#&55!
]>
-
(&^9*#&*R)*&=
-
1&/8&09*&90?X&)&L)69$&<908*/*"#0*&9H&%#9*R#$L)?&%)8#8&5"*&)?89&9H&]>
-
Q56!
$/<R&89"$&%)8(&&1/0<#&*R#&<98*&9H&]]1&/8&29L/0)*#2&5X&<)[*"$#&)02&%)8&8#[)$)*/90,&*R#&57!
9K#$)??&<98*&<9"?2&5#&?9d#$#2&8"58*)0*/)??X&5X&/06#<*/0%&%)8&L/M*"$#8&$)*R#$&*R)0&["$#&58!
]>
-&
b9c(&=#0<#,&*R#&["$[98#&9H&*R#&L/M#2&]>
-
&_&=
-
1&/06#<*/90&d)8&*9&)88#88&*R#&H#)8/5/?/*X&59!
9H&/06#<*/0%&/L["$/*/#8&/0&*R#&]>
-
&8*$#)L(&&60!
&61!
WR#&])$5U/M&/06#<*/90&8/*#&/8&8/*")*#2&)59"*&-B&@L&#)8*&9H&C#X@6)K/@&)02&#i"/[[#2&d/*R&)&62!
-YYY&L&2##[&/06#<*/90&d#??&b=^Y-c&)02&N&L90/*9$/0%&d#??8&$)0%/0%&/0&2#[*R&H$9L&+BY&*9&63!
+:YY&L&bU/%(&+c(&WR#&*)$%#*&]>
-
&8*9$)%#&H9$L)*/90&/8&5#*d##0&AYY&)02&NYY&L&2#[*R&)02&64!
<908/8*8&9H&5)8)?*/<&?)K)8&)02&RX)?9<?)8*/*#8&d/*R&?)*#$)?&)02&K#$*/<)?&/0*$/08/<&65!
[#$L#)5/?/*/#8&9H&:YY&)02&+IYY&M&+Y
Q+B&
L
-
,&$#8[#<*/K#?X&b15,$16c(&J*&/8&9K#$?)/0&5X&?9d&66!

!
4!
[#$L#)5/?/*X&RX)?9<?)8*/*#8(&&WR#&H9$L)*/90&d)*#$&*#L[#$)*"$#&)02&[=&/0&*R#&/06#<*/90&67!
/0*#$K)?&$)0%#&H$9L&-Y&*9&::l]&)02&H$9L&N(A&*9&S(A,&)02&/*&/8&9MX%#0&2#[?#*#2
&
b+Bc(&O"#&*9&68!
*R#&8R)??9d&2#[*R&9H&*R#&*)$%#*&8*9$)%#&$#8#$K9/$&)02&*R#&$/8@&9H&]>
-
&%)8&?#)@)%#&*R$9"%R&69!
H$)<*"$#8,&)&09K#?&]>
-&
/06#<*/90&8X8*#L&d)8&2#8/%0#2&)02&"8#2,&dR/<R&2/889?K#8&*R#&70!
%)8#8&/0*9&29d0QH?9d/0%&d)*#$&/0&*R#&d#??&2"$/0%&/*8&/06#<*/90&b17c(&W9&)K9/2&[9*#0*/)?&71!
2#%)88/0%,&]>
-&
<90<#0*$)*/90&/0&*R#&/06#<*#2&H?"/28&d)8&@#[*&5#?9d&/*8&89?"5/?/*X&)*&72!
$#8#$K9/$&<902/*/908&b+Ic(&>0<#&2/889?K#2&/0&d)*#$,&]>
-
&/8&09&?90%#$&5"9X)0*&b+Ic&)02&/*&73!
/LL#2/)*#?X&8*)$*8&*9&$#)<*&d/*R&*R#&])Q'%QU#Q$/<R&$#8#$K9/$&$9<@8(&&74!
&75!
1/0<#&2/889?K#2&9$&L/0#$)?/V#2&]>
-
&<)009*&5#&2#*#<*#2&5X&<90K#0*/90)?&L90/*9$/0%&76!
L#*R928&8"<R&)8&8#/8L/<&/L)%/0%,&*R#&H)*#&9H&*R#&/06#<*#2&]>
-
&d)8&L90/*9$#2&"8/0%&)&77!
8"/*#&9H&<R#L/<)?&)02&/89*9[/<&*$)<#$8(&WR#&/06#<*#2&]>
-&
d)8&8[/@#2&d/*R&<)$590Q+A&b
+A
]c,&78!
*9&L90/*9$&/*8&*$)08[9$*&)02&$#)<*/K/*X&b18c(&U9$&*R#&["$#&]>
-
&)02&*R#&]>
-
&_&=
-
1&79!
/06#<*/908,&*R#&
+A
]&<90<#0*$)*/908&9H&*R#&/06#<*#2&H?"/28&d#$#&AY(Y&Gi_\&b
+A
]_
+-
]k&-(+F&M&80!
+Y
Q++
c&)02&F&Gi_\&b
+A
]_
+-
]k&F(B&M&+Y
Q+-
c,&$#8[#<*/K#?X(&GX&<9L[)$/890,&*R#&
+A
]&<90<#0*$)*/90&81!
/0&*R#&$#8#$K9/$&[$/9$&*9&*R#&/06#<*/908&d)8&Y(YYYF&Gi_\&b
+A
]_
+-
]k&+(FN&M&+Y
Q+:
c(&WR/8&09K#?&82!
<)$590&*$)<@/0%&L#*R92&d)8&[$#K/9"8?X&[$9[98#2&H9$&%#9?9%/<&]>
-
&8*9$)%#&L90/*9$/0%&83!
5"*&/*8&H#)8/5/?/*X&R)8&09*&5##0&*#8*#2&[$#K/9"8?X&b19,$20c(&E8&
+A
]>
-
&5#R)K#8&<R#L/<)??X&84!
)02&[RX8/<)??X&/2#0*/<)?&)8&
+-
]>
-
&)02&/8&90?X&L/0/L)??X&)HH#<*#2&5X&/89*9[#&H$)<*/90&2"$/0%&85!
[R)8#&*$)08/*/908&b21c&/*&[$9K/2#8&*R#&L#)08&*9&)<<"$)*#?X&/0K#0*9$X&*R#&H)*#&9H&*R#&86!
/06#<*#2&<)$590(&&87!
&88!

!
5!
J0&)22/*/90&*9&
+A
],&d#&<90*/0"9"8?X&<9Q/06#<*#2&090Q$#)<*/K#&5"*&K9?)*/?#&8"?H"$&89!
R#M)H?"9$/2#&b1U
F
c&)02&*$/H?"9$9L#*RX?&8"?H"$&[#0*)H?"9$/2#&b1U
B
]U
:
c&*$)<#$8&*9&)88#88&90!
[?"L#&L/%$)*/90&/0&*R#&$#8#$K9/$(&WR#&1U
F
&d)8&"8#2&2"$/0%&aR)8#&J&)02&1U
B
]U
:
&2"$/0%&91!
aR)8#&JJ(&WR#&1U
F
&)02&1U
B
]U
:
&<90<#0*$)*/908&/0&*R#&/06#<*#2&H?"/28&d#$#&-(::&M&+Y
QN&
92!
<<1Wa_<<&)02&-(-A&M&+Y
QN&
<<1Wa_<<,&$#8[#<*/K#?X(&93!
&94!
WR#&]>
-
&)02&]>
-
_=
-
1&L/M*"$#8,&*9%#*R#$&d/*R&*R#&*$)<#$8&d#$#&/06#<*#2&/0*9&*R#&*)$%#*&95!
8*9$)%#&H9$L)*/90&H"??X&2/889?K#2&/0&d)*#$&["L[#2&H$9L&)&0#)$5X&d#??(&WX[/<)?&/06#<*/90&96!
$)*#8&2"$/0%&aR)8#&J&/06#<*/90&d#$#&IY&%_8&H9$&]>
-
&)02&+NYY&%_8&H9$&=
-
>,&$#8[#<*/K#?X&97!
b17c(&J06#<*/90&$)*#8&2"$/0%&aR)8#&JJ&K)$/#2&5#*d##0&+Y&)02&BY&%_8&H9$&]>
-
&)02&A+I&)02&98!
-YN-&%_8&H9$&=
-
>(&WR#&2/889?K#2&<)$590&<90<#0*$)*/90&bOJ]c&)02&[=&9H&*R#&/06#<*)*#8&99!
d#$#&Y(N-&L9?_\&)02&:(NB&b)*&-Yl]c&H9$&aR)8#&J&)02&Y(A:&L9?_\&)02&A(Y:&H9$&aR)8#&JJ(&U?"/2&100!
8)L[?#8&H9$&1U
F
,&1U
B
]U
:
,&
+A
],&OJ]&)02&[=&)0)?X8#8&d#$#&<9??#<*#2&d/*R9"*&2#%)88/0%&"8/0%&101!
)&8[#</)??X&2#8/%0#2&29d0R9?#&8)L[?#$&H$9L&*R#&/06#<*/90&d#??&=^Y-&b22c&9$&d/*R&)&102!
8"5L#$8/5?#&["L[&H$9L&*R#&H/$8*&L90/*9$/0%&d#??&=^YA&?9<)*#2&<)(&IY&L&29d08*$#)L&103!
H$9L&=^Y-&)*&AYY&L&2#[*R&5#?9d&8"$H)<#&[$/9$,&2"$/0%&)02&[98*Q/06#<*/90&bW)5?#8&1+&Q&104!
1:c(&&&105!
&106!
WR#&)$$/K)?&9H&*R#&/06#<*)*#&H$9L&aR)8#&J&)*&*R#&L90/*9$/0%&d#??&=^YA&d)8&<90H/$L#2&5X&107!
)0&/0<$#)8#&/0&1U
F
&<90<#0*$)*/90,&)02&)&8R)$[&2#<$#)8#&/0&[=&)02&OJ]&<90<#0*$)*/90&bU/%(&108!
-&E&)02&G,&W)5?#&1:c(&G)8#2&90&*R#&1U
F
&2)*),&*R#&/0/*/)?&5$#)@*R$9"%R&/0&=^YA&9<<"$$#2&109!
BF&2)X8&)H*#$&/06#<*/90(&1"58#i"#0*?X,&*R#&1U
F&
<90<#0*$)*/90&8?/%R*?X&2#<$#)8#2&5#H9$#&)&110!

Citations
More filters

Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development

TL;DR: In this paper, the authors present a survey of the work of the authors of this paper, including the following authors: Katherine Calvin (USA), Joana Correia de Oliveira de Portugal Pereira (UK/Portugal), Oreane Edelenbosch (Netherlands/Italy), Johannes Emmerling (Italy/Germany), Sabine Fuss (Germany), Thomas Gasser (Austria/France), Nathan Gillett (Canada), Chenmin He (China), Edgar Hertwich (USA/Austria), Lena Höglund-Is
Journal ArticleDOI

A review of developments in carbon dioxide storage

TL;DR: A review of the state-of-the-art developments in CO2 storage can be found in this paper, where the authors highlight the current status, current challenges and uncertainties associated with further deployment of established approaches and feasibility demonstration of relatively newer storage concepts.
Journal ArticleDOI

Carbon Capture and Utilization Update

TL;DR: In this paper, the authors provide an overview of the current status of CO2-capture technologies and their associated challenges and opportunities with respect to efficiency and economy, and summarize the main challenges associated with the design, development, and large-scale deployment of new technologies and opportunities to accelerate their scaleup in the near future.
Journal ArticleDOI

Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage

TL;DR: Li et al. as discussed by the authors proposed a reversible Li-CO 2 battery system based on co-oxidization of the resulting carbon and Li 2 CO 3 using a Ru catalyst, which provides strong theoretical underpinning for developing flexible routes for both CO 2 fixation and energy storage.
Journal ArticleDOI

Carbon dioxide storage through mineral carbonation

TL;DR: In this paper, the authors discuss the potential of mineral carbonation to address the global carbon capture and storage challenge and contribute to long-term reductions in atmospheric CO2, focusing on the advances in making this technology more cost-effective and in exploring the limits and global applicability of CO2 mineralization.
References
More filters
Journal ArticleDOI

Characterizing aquatic dissolved organic matter.

TL;DR: In this article, standards for reporting C-14 age determinations are discussed, and the statistical uncertainty (plus or minus one standard deviation) expresses counting errors, inaccuracies in voltage, pressure, temperature, dilution, and should include errors in C-13 ratios.
Book

IPCC special report on carbon dioxide capture and storage

TL;DR: The implications of carbon dioxide capture and storage for greenhouse gas inventories and accounting are discussed in detail in this paper, where the authors present a list of publications related to CO2 and carbon-based fuels.
Journal ArticleDOI

Earthquake triggering and large-scale geologic storage of carbon dioxide

TL;DR: It is argued here that there is a high probability that earthquakes will be triggered by injection of large volumes of CO2 into the brittle rocks commonly found in continental interiors, and large-scale CCS is a risky, and likely unsuccessful, strategy for significantly reducing greenhouse gas emissions.
Journal ArticleDOI

Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation

TL;DR: In this paper, the authors show that the rate of carbonate mineral formation is much higher in host rocks that are rich in magnesium- and calcium-bearing minerals, such as basalts and magnesium-rich mantle rocks that have been emplaced on the continents.
Journal ArticleDOI

Solubility trapping in formation water as dominant CO2 sink in natural gas fields

TL;DR: It is suggested that long-term anthropogenic CO2 storage models in similar geological systems should focus on the potential mobility of CO2 dissolved in water, following the findings that geological mineral fixation is a minor CO2 trapping mechanism in natural gas fields.
Related Papers (5)
Frequently Asked Questions (13)
Q1. What is the effect of precipitated carbonate minerals on the formation of basalts?

During basalt-water-CO2 interaction, calcium liberated by basalt dissolution tends to provoke calcite precipitation, whereas the liberated magnesium, aluminum and silicon tend to provoke the formation of zeolite and clay minerals (15, 16, 32). 

Juerg M. Matter, Martin Stute, Sandra Ó. Snæbjörnsdottir, Einar Gunnlaugsson, Gudni Axelsson, Helgi A. Alfredsson, Sigurdur R. Gislason, Edda S. Aradottir and Wallace S. Broecker this paper. 

Groundwater flow in the top tens of meters is to southwest (16); water flow in the lower part of the system is focused in lava flows located at the CO2 injection depth of 400–800 m depth. 

Carbon-14 was added to the water injection stream as an aqueous H14CO3- solution using a Milton Roy micro-dosing pump (Model AA973-352S3). 

The dominance of advection as the chemical transport mechanism in the system is evident in the concentration of chemical tracer in the monitoring fluid shown in Fig. 2; aqueous diffusion is far too slow to transport substantial material from the injection to the monitoring well over the 2- year study period. 

Days since injection startedNa-Flu (g/L)SF6 (ccSTP/cc) SF6 Phase The author(ccSTP/cc)*SF5CF3 Phase II(ccSTP/cc) pHDIC (mmol/L)14C (frac. modern)± 

Several experimental studies have been aimed at assessing if precipitated carbonate minerals would eventually slow the overall carbonation rates of basalts and its constituent minerals (9,10). 

These results were attributed to the poor structural match between the dissolving silicate and precipitating carbonate, which leaves sufficient pathways for chemical mass transfer to and from the adjoining fluid phase (e.g. 34). 

Imaging of samples EDXS mapping of the grains collected from inside the pump shows a banded structure where they were fractured, with a first generation of calcite containing rich in Fe- and Si and a second generation largely without such material (Fig. S3). 

These samples were sputter coated with Au and imaged under high vacuum (4 x 10-4 Pa) to resolved detailed morphological features. 

SEM imaging and EDXS mapping clearly show 10 um to 1 mm slightly elongated grains rich in Ca, C, and O, as expected for calcite, with trace concentrations of Mg, Mn, and Fe (Fig. S2). 

Concentrations in the headspace were measured with a precision of ±2% using gas chromatography (SRI 8610C) and ultrapure nitrogen as the carrier gas. 

In 2008, the authors injected SF6 and sodium fluorescein (Na-Flu) into the target storage reservoir during a short duration tracer test to characterize the hydrology of the injection site.