scispace - formally typeset
Open AccessJournal ArticleDOI

Seed dormancy and the control of germination

TLDR
It is argued that adaptation has taken place on a theme rather than via fundamentally different paths and similarities underlying the extensive diversity in the dormancy response to the environment that controls germination are identified.
Abstract
Seed dormancy is an innate seed property that defines the environmental conditions in which the seed is able to germinate. It is determined by genetics with a substantial environmental influence which is mediated, at least in part, by the plant hormones abscisic acid and gibberellins. Not only is the dormancy status influenced by the seed maturation environment, it is also continuously changing with time following shedding in a manner determined by the ambient environment. As dormancy is present throughout the higher plants in all major climatic regions, adaptation has resulted in divergent responses to the environment. Through this adaptation, germination is timed to avoid unfavourable weather for subsequent plant establishment and reproductive growth. In this review, we present an integrated view of the evolution, molecular genetics, physiology, biochemistry, ecology and modelling of seed dormancy mechanisms and their control of germination. We argue that adaptation has taken place on a theme rather than via fundamentally different paths and identify similarities underlying the extensive diversity in the dormancy response to the environment that controls germination.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Seed germination responses to seasonal temperature and drought stress are species-specific but not related to seed size in a desert steppe: Implications for effect of climate change on community structure.

TL;DR: The predicted warmer and dryer climate will favor germination of drought‐tolerant species, resulting in altered proportions of germinants of different species and subsequently change in community composition of the desert steppe.
Journal ArticleDOI

cGMP is required for seed germination in Arabidopsis thaliana.

TL;DR: It is demonstrated that both, a membrane-permeant analogue of cGMP (8-Br-cGMP) and the cyclic nucleotide phosphodiesterase (PDE) inhibitor Tadalafil promoted A. thaliana seed germination, whereas the guanylate cyclase inhibitor LY 83583 (6-anilino-5,8-quinolinedione; LY) inhibited it.
Journal ArticleDOI

Are winter and summer dormancy symmetrical seasonal adaptive strategies? The case of temperate herbaceous perennials.

TL;DR: It is suggested to explore the inter- and intraspecific genotypic variability of dormancy and its plasticity according to environmental conditions to contribute to predicting and mitigating global warming.
Journal ArticleDOI

HRS1 acts as a negative regulator of abscisic acid signaling to promote timely germination of Arabidopsis seeds

TL;DR: The data suggest that HRS1 may be needed for suppressing ABA signaling in germinating embryo axis, which promotes the timely germination of Arabidopsis seeds probably by facilitating the proper function of plasmalemma H+-ATPase and the efficient elongation of LH and TZ cells.
References
More filters
Book

Seeds: Ecology, Biogeography, and, Evolution of Dormancy and Germination

TL;DR: A Geographical Perspective on Germination Ecology: Tropical and Sub-tropical Zones as discussed by the authors, Temperate and Arctic Zones, and Semi-Arctic Zones: Temperate, Subtropical, and Arctic zones.
Book

Seeds: Physiology of Development and Germination

TL;DR: Seeds: Germination, Structure, and Composition; Development-Regulation and Maturation; Mobilization of Stored Seed Reserves; and some Ecophysiological Aspects.
Journal ArticleDOI

Seed Germination and Dormancy.

TL;DR: This review provides both an overview of the essential processes that are associated with germination and a description of the possible impediments thereto that may result in dormancy.
Related Papers (5)