scispace - formally typeset
Journal ArticleDOI

Plant hormone interactions during seed dormancy release and germination

TLDR
This review focuses mainly on eudicot seeds, and on the interactions between abscisic acid (ABA), gibberellins (GA), ethylene, brassinosteroids, auxin and cytokinins in regulating the interconnected molecular processes that control dormancy release and germination.
Abstract
This review focuses mainly on eudicot seeds, and on the interactions between abscisic acid (ABA), gibberellins (GA), ethylene, brassinosteroids (BR), auxin and cytokinins in regulating the interconnected molecular processes that control dormancy release and germination. Signal transduction pathways, mediated by environmental and hormonal signals, regulate gene expression in seeds. Seed dormancy release and germination of species with coat dormancy is determined by the balance of forces between the growth potential of the embryo and the constraint exerted by the covering layers, e.g. testa and endosperm. Recent progress in the field of seed biology has been greatly aided by molecular approaches utilizing mutant and transgenic seeds of Arabidopsis thaliana and the Solanaceae model systems, tomato and tobacco, which are altered in hormone biology. ABA is a positive regulator of dormancy induction and most likely also maintenance, while it is a negative regulator of germination. GA releases dormancy, promotes germination and counteracts ABA effects. Ethylene and BR promote seed germination and also counteract ABA effects. We present an integrated view of the molecular genetics, physiology and biochemistry used to unravel how hormones control seed dormancy release and germination.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Seed dormancy and the control of germination

TL;DR: It is argued that adaptation has taken place on a theme rather than via fundamentally different paths and similarities underlying the extensive diversity in the dormancy response to the environment that controls germination are identified.
Journal ArticleDOI

Properties of bacterial endophytes and their proposed role in plant growth.

TL;DR: The modulation of ethylene levels in plants by bacterially produced 1-aminocyclopropane-1-carboxylate deaminase is a key trait that enables interference with the physiology of the host plant, and this mechanism leads to the concept of 'competent' endophytes, defined asendophytes that are equipped with genes important for maintenance of plant-endophyte associations.
Journal ArticleDOI

Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination

TL;DR: Current knowledge of the molecular control of this trait in Arabidopsis thaliana is presented, focussing on important components functioning during the developmental phases of seed maturation, after-ripening and imbibition.
Journal ArticleDOI

Seed Germination and Vigor

TL;DR: It is highlighted that germination vigor depends on multiple biochemical and molecular variables and their characterization is expected to deliver new markers of seed quality that can be used in breeding programs and/or in biotechnological approaches to improve crop yields.
Journal ArticleDOI

From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology.

TL;DR: The concept of the "oxidative window for germination" as mentioned in this paper restricts the occurrence of the cellular events associated with germination to a critical range of reactive oxygen species (ROS) level, enclosed by lower and higher limits.
References
More filters
Journal ArticleDOI

Seed Germination and Dormancy.

TL;DR: This review provides both an overview of the essential processes that are associated with germination and a description of the possible impediments thereto that may result in dormancy.
Journal ArticleDOI

Abscisic Acid Signaling in Seeds and Seedlings

TL;DR: Abscisic acid regulates many agronomically important aspects of plant development, including the synthesis of seed storage proteins and lipids, the promotion of seed desiccation tolerance and dormancy, and the inhibition of the phase transitions from embryonic to germinative growth and from.
Journal ArticleDOI

The F-box protein TIR1 is an auxin receptor

TL;DR: TIR1 is an auxin receptor that mediates Aux/IAA degradation and auxin-regulated transcription and the loss of TIR1 and three related F-box proteins eliminates saturable auxin binding in plant extracts.
Journal ArticleDOI

A classification system for seed dormancy

TL;DR: It is suggested that a modified version of the scheme of the Russian seed physiologist Marianna G. Nikolaeva be adopted and includes three hierarchical layers – class, level and type; thus, a class may contain levels and types, and a level may contain only types.
Journal ArticleDOI

Abscisic acid signal transduction

TL;DR: Substantial evidence points to the importance of reversible protein phosphorylation and modifications of cytosolic calcium levels and pH as intermediates in ABA signal transduction.
Related Papers (5)