scispace - formally typeset
Open AccessJournal ArticleDOI

Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors

TLDR
A hybridized self-powered textile for simultaneously collecting solar energy and random body motion energy was demonstrated and can be easily woven into electronic textiles to fabricate smart clothes to sustainably operate mobile or wearable electronics.
Abstract
Wearable electronics fabricated on lightweight and flexible substrate are believed to have great potential for portable devices, but their applications are limited by the life span of their batteries We propose a hybridized self-charging power textile system with the aim of simultaneously collecting outdoor sunshine and random body motion energies and then storing them in an energy storage unit Both of the harvested energies can be easily converted into electricity by using fiber-shaped dye-sensitized solar cells (for solar energy) and fiber-shaped triboelectric nanogenerators (for random body motion energy) and then further stored as chemical energy in fiber-shaped supercapacitors Because of the all–fiber-shaped structure of the entire system, our proposed hybridized self-charging textile system can be easily woven into electronic textiles to fabricate smart clothes to sustainably operate mobile or wearable electronics

read more

Citations
More filters
Journal ArticleDOI

Wearable biosensors for healthcare monitoring.

TL;DR: Although wearable biosensors hold promise, a better understanding of the correlations between analyte concentrations in the blood and noninvasive biofluids is needed to improve reliability.
Journal ArticleDOI

Triboelectric Nanogenerator: A Foundation of the Energy for the New Era

TL;DR: In this paper, the fundamental theory, experiments, and applications of TENGs are reviewed as a foundation of the energy for the new era with four major application fields: micro/nano power sources, self-powered sensors, large-scale blue energy, and direct high-voltage power sources.
Journal ArticleDOI

Mutual Insight on Ferroelectrics and Hybrid Halide Perovskites: A Platform for Future Multifunctional Energy Conversion.

TL;DR: An insight into the analogies, state-of-the-art technologies, concepts, and prospects under the umbrella of perovskite materials (both inorganic-organic hybrid halideperovskites and ferroelectric perovkites) for future multifunctional energy conversion and storage devices is provided.
Journal ArticleDOI

Wearable and flexible electronics for continuous molecular monitoring.

TL;DR: This article reviews and highlights recent advances in wearable and flexible sensors toward continuous and non-invasive molecular analysis in sweat, tears, saliva, interstitial fluid, blood, wound exudate as well as exhaled breath.
Journal ArticleDOI

Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence.

TL;DR: A critical review is presented on the current state of the arts of wearable fiber/fabric-based piezoelectric nanogenerators and triboelectrics with respect to basic classifications, material selections, fabrication techniques, structural designs, and working principles, as well as potential applications.
References
More filters
Journal ArticleDOI

Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors

TL;DR: A comprehensive review of the four modes, their theoretical modelling, and the applications of TENGs for harvesting energy from human motion, walking, vibration, mechanical triggering, rotating tire, wind, flowing water and more as well as self-powered sensors is provided in this article.
Journal ArticleDOI

Multifunctional wearable devices for diagnosis and therapy of movement disorders

TL;DR: Materials, mechanics and designs for multifunctional, wearable-on-the-skin systems that address technical challenges via monolithic integration of nanomembranes fabricated with a top-down approach, nanoparticles assembled by bottom-up methods, and stretchable electronics on a tissue-like polymeric substrate are described.
Journal ArticleDOI

Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors

TL;DR: In this paper, the authors demonstrate the importance and great potential of graphene-based composites in the development of high-performance energy-storage systems and demonstrate that the combined advantages of GSs and RuO 2 in such a unique structure are that the ROGSC-based supercapacitors exhibit high specifi c capacitance ( ∼ 570 F g − 1 for 38.3 wt% Ru loading), enhanced rate capability, excellent electrochemical stability ( ∼ 97.9% retention after 1000 cycles), and high energy density (20.1 Wh kg − 1 )
Journal ArticleDOI

Fiber Supercapacitors Made of Nanowire‐Fiber Hybrid Structures for Wearable/Flexible Energy Storage

TL;DR: Many existing energy-harvesting and storage devices are still too bulky and heavy for intended applications, but the use of rigid FTO glass has restricted adaptability of DSSCs during transportation, installation, and application.
Journal ArticleDOI

A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing

TL;DR: The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control.
Related Papers (5)