scispace - formally typeset
Journal ArticleDOI

Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors

TLDR
In this paper, the authors demonstrate the importance and great potential of graphene-based composites in the development of high-performance energy-storage systems and demonstrate that the combined advantages of GSs and RuO 2 in such a unique structure are that the ROGSC-based supercapacitors exhibit high specifi c capacitance ( ∼ 570 F g − 1 for 38.3 wt% Ru loading), enhanced rate capability, excellent electrochemical stability ( ∼ 97.9% retention after 1000 cycles), and high energy density (20.1 Wh kg − 1 )
Abstract
Hydrous ruthenium oxide (RuO 2 )/graphene sheet composites (ROGSCs) with different loadings of Ru are prepared by combining sol–gel and low-temperature annealing processes. The graphene sheets (GSs) are well-separated by fi ne RuO 2 particles (5–20 nm) and, simultaneously, the RuO 2 particles are anchored by the richly oxygen-containing functional groups of reduced, chemically exfoliated GSs onto their surface. Benefi ts from the combined advantages of GSs and RuO 2 in such a unique structure are that the ROGSC-based supercapacitors exhibit high specifi c capacitance ( ∼ 570 F g − 1 for 38.3 wt% Ru loading), enhanced rate capability, excellent electrochemical stability ( ∼ 97.9% retention after 1000 cycles), and high energy density (20.1 Wh kg − 1 ) at low operation rate (100 mA g − 1 ) or high power density (10000 W kg − 1 ) at a reasonable energy density (4.3 Wh kg − 1 ). Interestingly, the total specifi c capacitance of ROGSCs is higher than the sum of specifi c capacitances of pure GSs and pure RuO 2 in their relative ratios, which is indicative of a positive synergistic effect of GSs and RuO 2 on the improvement of electrochemical performance. These fi ndings demonstrate the importance and great potential of graphenebased composites in the development of high-performance energy-storage systems.

read more

Citations
More filters
Journal ArticleDOI

Graphene based materials: Past, present and future

TL;DR: Graphene and its derivatives are being studied in nearly every field of science and engineering as mentioned in this paper, and recent progress has shown that the graphene-based materials can have a profound impact on electronic and optoelectronic devices, chemical sensors, nanocomposites and energy storage.
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.

Ultracapacitors: Why, How, and Where is the Technology

TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Journal ArticleDOI

Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications

TL;DR: The synthesis, characterization, properties, and applications of graphene-based materials are discussed and the promising properties together with the ease of processibility and functionalization make graphene- based materials ideal candidates for incorporation into a variety of functional materials.
Journal ArticleDOI

Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions

TL;DR: In this paper, the effect of nanostructures on the properties of supercapacitors including specific capacitance, rate capability and cycle stability is discussed, which may serve as a guideline for the next generation of super-capacitor electrode design.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Journal ArticleDOI

Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide

TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.
Journal ArticleDOI

Graphene: Status and Prospects

TL;DR: This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
Related Papers (5)