scispace - formally typeset
Journal ArticleDOI

Slow magnetization dynamics in a series of two-coordinate iron(II) complexes

TLDR
In this paper, a series of two-coordinate complexes of iron(II) were prepared and studied for single-molecule magnet behavior, and the spin reversal barriers were fit by employing a sum of tunneling, direct, Raman and Orbach relaxation processes, resulting in spin reversal barrier of Ueff = 181, 146, 109, 104, and 43 cm−1 for 1−5, respectively.
Abstract
A series of two-coordinate complexes of iron(II) were prepared and studied for single-molecule magnet behavior. Five of the compounds, Fe[N(SiMe3)(Dipp)]2 (1), Fe[C(SiMe3)3]2 (2), Fe[N(H)Ar′]2 (3), Fe[N(H)Ar*]2 (4), and Fe(OAr′)2 (5) feature a linear geometry at the FeII center, while the sixth compound, Fe[N(H)Ar#]2 (6), is bent with an N–Fe–N angle of 140.9(2)° (Dipp = C6H3-2,6-Pri2; Ar′ = C6H3-2,6-(C6H3-2,6-Pri2)2; Ar* = C6H3-2,6-(C6H2-2,4,6-Pri2)2; Ar# = C6H3-2,6-(C6H2-2,4,6-Me3)2). Ac magnetic susceptibility data for all compounds revealed slow magnetic relaxation under an applied dc field, with the magnetic relaxation times following a general trend of 1 > 2 > 3 > 4 > 5 ≫ 6. Arrhenius plots created for the linear complexes were fit by employing a sum of tunneling, direct, Raman, and Orbach relaxation processes, resulting in spin reversal barriers of Ueff = 181, 146, 109, 104, and 43 cm−1 for 1–5, respectively. CASSCF/NEVPT2 calculations on the crystal structures were performed to explore the influence of deviations from rigorous D∞h geometry on the d-orbital splittings and the electronic state energies. Asymmetry in the ligand fields quenches the orbital angular momentum of 1–6, but ultimately spin–orbit coupling is strong enough to compensate and regenerate the orbital moment. The lack of simple Arrhenius behavior in 1–5 can be attributed to a combination of the asymmetric ligand field and the influence of vibronic coupling, with the latter possibility being suggested by thermal ellipsoid models to the diffraction data.

read more

Citations
More filters
Journal ArticleDOI

The ORCA quantum chemistry program package

TL;DR: In this contribution to the special software-centered issue, the ORCA program package is described, which is a widely used program in various areas of chemistry and spectroscopy with a current user base of over 22 000 registered users in academic research and in industry.
Journal ArticleDOI

Symmetry strategies for high performance lanthanide-based single-molecule magnets

TL;DR: In this review, crystal-field theory is employed to demonstrate the electronic structures according to the semiquantitative electrostatic model and specific symmetry elements are analysed for the elimination of transverse crystal fields and quantum tunnelling of magnetization (QTM).
Journal ArticleDOI

Improving f-element single molecule magnets

TL;DR: This tutorial review discusses the increasing trend to exploit the large magnetic moments and anisotropies of f-element ions in molecular nanomagnets, and presents a critical discussion of key parameters to be optimised.
Journal ArticleDOI

3d single-ion magnets

TL;DR: Here, the synthetic chemist has a significant role to play, both in the design of ligands to enforce propitious splitting of the 3d orbitals and in the judicious choice of TM ion.
References
More filters
Journal ArticleDOI

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides

TL;DR: The effective ionic radii of Shannon & Prewitt [Acta Cryst. (1969), B25, 925-945] are revised to include more unusual oxidation states and coordinations as mentioned in this paper.
Journal ArticleDOI

Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics

TL;DR: In this paper, the locus of the dielectric constant in the complex plane was defined to be a circular arc with end points on the axis of reals and center below this axis.
Journal ArticleDOI

Magnetic bistability in a metal-ion cluster

TL;DR: In this article, it was shown that the magnetization of the Mn12 cluster is highly anisotropic and the magnetisation relaxation time becomes very long below a temperature of 4 K, giving rise to pronounced hysteresis.
Journal ArticleDOI

Safe and Convenient Procedure for Solvent Purification

TL;DR: This procedure provides a nonhazardous alternative to distillations and vacuum transfers and does not require undue supervision or cooling, yet allows for the rapid collection of large quantities of extremely pure solvents on demand.
Journal ArticleDOI

Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials

TL;DR: The fundamental concepts needed to understand quantum size effects in molecular magnets are reviewed and critically report what has been done in the field to date are critically reported.
Related Papers (5)