scispace - formally typeset
Journal ArticleDOI

Solar energy conversion by dye-sensitized photovoltaic cells

Michael Grätzel
- 26 Sep 2005 - 
- Vol. 44, Iss: 20, pp 6841-6851
TLDR
Developing solar cells that are based on the sensitization of mesoscopic oxide films by dyes or quantum dots, and the examples for the first outdoor application of such solar cells will be provided.
Abstract
The quality of human life depends to a large degree on the availability of energy. This is threatened unless renewable energy resources can be developed in the near future. Chemistry is expected to make important contributions to identify environmentally friendly solutions of the energy problem. One attractive strategy discussed in this Forum Article is the development of solar cells that are based on the sensitization of mesoscopic oxide films by dyes or quantum dots. These systems have already reached conversion efficiencies exceeding 11%. The underlying fundamental processes of light harvesting by the sensitizer, heterogeneous electron transfer from the electronically excited chromophore into the conduction band of the semiconductor oxide, and percolative migration of the injected electrons through the mesoporous film to the collector electrode will be described below in detail. A number of research topics will also be discussed, and the examples for the first outdoor application of such solar cells wi...

read more

Citations
More filters
Journal ArticleDOI

Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell.

TL;DR: The novel selective hierarchical growth approach represents a low cost, all solution processed hydrothermal method that yields complex hierarchical ZnO nanowire photoanodes by utilizing a simple engineering of seed particles and capping polymer.
Journal ArticleDOI

Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water.

TL;DR: For the novel visible light photoactivity of Au/TiO(2), it has been determined that gold loading, particle size and calcination temperature play a role in the photocatalytic activity, the most active material being the catalyst containing 0.2 wt % gold with 1.87 nm average particle size.
Journal ArticleDOI

Solar photovoltaic electricity: Current status and future prospects

TL;DR: In this paper, the technical progress made in the past several years in the area of mono- and polycrystalline thin-film photovoltaic (PV) technologies based on Si, III-V, II-VI, and I-III-VI2 semiconductors, as well as nano-PV.
Journal ArticleDOI

Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.

TL;DR: Strongly electron-donating perylene carboxylic acid derivatives with amine substituents at their perylene core have allowed us to increase the power conversion efficiency of up to approximately 7% in perylene-sensitized solar cells.
References
More filters
Journal ArticleDOI

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Journal Article

Photoelectrochemical cells : Materials for clean energy

Michael Grätzel
- 01 Jan 2001 - 
TL;DR: In this paper, the authors look into the historical background, and present status and development prospects for photoelectrochemical cells, based on nanocrystalline materials and conducting polymer films.
Journal ArticleDOI

Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes

TL;DR: Cis-X 2 Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) complexes were prepared and characterized with respct to their absorption, luminescence, and redox behavior.
Journal ArticleDOI

Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies

TL;DR: A dye-sensitized heterojunction of TiO2 with the amorphous organic hole-transport material 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene (OMeTAD) was described in this article.
Journal ArticleDOI

Efficient photodiodes from interpenetrating polymer networks

TL;DR: In this paper, the interpenetrating network formed from a phase-segregated mixture of two semiconducting polymers is shown to provide both the spatially distributed interfaces necessary for efficient charge photo-generation, and the means for separately collecting the electrons and holes.
Related Papers (5)