scispace - formally typeset
Journal ArticleDOI

Spectroscopy of single metallic nanoparticles using total internal reflection microscopy

TLDR
In this article, a simple, fast, and flexible technique to measure optical scattering spectra of individual metallic nanoparticles was developed to measure the effect of particle diameter on the dephasing time of the particle plasmon resonance in gold nanoparticles.
Abstract
We have developed a simple, fast, and flexible technique to measure optical scattering spectra of individual metallic nanoparticles. The particles are placed in an evanescent field produced by total internal reflection of light from a halogen lamp in a glass prism. The light scattered by individual particles is collected using a conventional microscope and is spectrally analyzed by a nitrogen-cooled charge-coupled-device array coupled to a spectrometer. This technique is employed to measure the effect of particle diameter on the dephasing time of the particle plasmon resonance in gold nanoparticles. We also demonstrate the use of this technique for measurements in liquids, which is important for the potential application of particle plasmons in chemical or biological nanosensors.

read more

Citations
More filters
Journal ArticleDOI

Surface plasmon subwavelength optics

TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Book

Plasmonics: Fundamentals and Applications

TL;DR: In this paper, the authors discuss the role of surface plasmon polaritons at metal/insulator interfaces and their application in the propagation of surfaceplasmon waveguides.
Journal ArticleDOI

Nanostructured plasmonic sensors.

TL;DR: This work has shown that coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface can be associated with surface plasmons, which have potential applications in miniaturized optical devices, sensors, and photonic circuits.
Journal ArticleDOI

A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles.

TL;DR: The LSPR nanobiosensor provides a pathway to ultrasensitive biodetection experiments with extremely simple, small, light, robust, low-cost instrumentation that will greatly facilitate field-portable environmental or point-of-service medical diagnostic applications.
Journal ArticleDOI

Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications

TL;DR: Of all the possible nanoparticle shapes, gold nanorods are especially intriguing as they offer strong plasmonic fields while exhibiting excellent tunability and biocompatibility, according to a review of their radiative and nonradiative properties.
References
More filters
Journal ArticleDOI

Optical Constants of the Noble Metals

TL;DR: In this paper, the optical constants for the noble metals (copper, silver, and gold) from reflection and transmission measurements on vacuum-evaporated thin films at room temperature, in the spectral range 0.5-6.5 eV.
Journal ArticleDOI

Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering

TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Book

Optical Properties of Metal Clusters

TL;DR: In this paper, the authors present a survey of optical spectra of Elemental Metal Clusters and Chain Aggregates and discuss experimental results and experimental methods for metal clustering experiments.
Journal ArticleDOI

Surface-enhanced spectroscopy

TL;DR: The surface-enhanced Raman scattering (SERS) effect was first discovered by Fleischmann, Van Duyne, Creighton, and Creighton as discussed by the authors, who showed that molecules adsorbed on specially prepared silver surfaces produce a Raman spectrum that is at times a millionfold more intense than expected.
Journal ArticleDOI

Surface-Plasmon Resonances in Single Metallic Nanoparticles

TL;DR: In this paper, the authors measured the homogeneous line shape of the surface-plasmon resonance in single gold nanoparticles and observed double-peaked line shapes caused by electromagnetic coupling between close-lying particles.