scispace - formally typeset
Journal ArticleDOI

Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions

TLDR
In this article, a two-dimensional square lattice of skyrmions on the atomic length scale was described as the magnetic ground state of a hexagonal Fe film of one-atomic-layer thickness on the Ir(111) surface.
Abstract
Skyrmions are topologically protected field configurations with particle-like properties that play an important role in various fields of science. Recently, skyrmions have been observed to be stabilized by an external magnetic field in bulk magnets. Here, we describe a two-dimensional square lattice of skyrmions on the atomic length scale as the magnetic ground state of a hexagonal Fe film of one-atomic-layer thickness on the Ir(111) surface. Using spin-polarized scanning tunnelling microscopy we can directly image this non-collinear spin texture in real space on the atomic scale and demonstrate that it is incommensurate to the underlying atomic lattice. With the aid of first-principles calculations, we develop a spin model on a discrete lattice that identifies the interplay of Heisenberg exchange, the four-spin and the Dzyaloshinskii-Moriya interaction as the microscopic origin of this magnetic state.

read more

Citations
More filters
Journal ArticleDOI

Topological properties and dynamics of magnetic skyrmions

TL;DR: From this description, potential applications of skyrmions as information carriers in magnetic information storage and processing devices are envisaged.
Journal ArticleDOI

Skyrmions on the track

TL;DR: Magnetic skyrmions are nanoscale spin configurations that hold promise as information carriers in ultradense memory and logic devices owing to the extremely low spin-polarized currents needed to move them.
Journal ArticleDOI

Current-driven dynamics of chiral ferromagnetic domain walls

TL;DR: This work directly confirms the DW chirality and rigidity by examining current-driven DW dynamics with magnetic fields applied perpendicular and parallel to the spin spiral and resolves the origin of controversial experimental results.
Journal ArticleDOI

Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures

TL;DR: It is demonstrated by numerical investigations that an isolated skyrmion can be a stable configuration in a nanostructure, can be locally nucleated by injection of spin-polarized current, and can be displaced by current-induced spin torques, even in the presence of large defects.
Journal ArticleDOI

Magnetic skyrmions: advances in physics and potential applications

TL;DR: A review of the underlying physics of the stabilization of skyrmions at room temperature and their prospective use for spintronic applications is discussed in this paper, where the development of topological spintronics holds promise for applications in the mid-term furure, even though many challenges such as the achievement of writing, processing and reading functionalities at room-temperature and in all-electrical manipulation schemes, still lie ahead.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Self-interaction correction to density-functional approximations for many-electron systems

TL;DR: In this paper, the self-interaction correction (SIC) of any density functional for the ground-state energy is discussed. But the exact density functional is strictly selfinteraction-free (i.e., orbitals demonstrably do not selfinteract), but many approximations to it, including the local spin-density (LSD) approximation for exchange and correlation, are not.
Journal ArticleDOI

Anisotropic Superexchange Interaction and Weak Ferromagnetism

TL;DR: In this paper, the Anderson theory of superexchange was extended to include spin-orbit coupling and the antisymmetric spin coupling suggested by Dzialoshinski from purely symmetry grounds and the symmetric pseudodipolar interaction were derived.
Journal ArticleDOI

Skyrmion Lattice in a Chiral Magnet

TL;DR: This study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of crystalline order composed of topologically stable spin states in the chiral itinerant-electron magnet MnSi.
Journal ArticleDOI

Real-space observation of a two-dimensional skyrmion crystal

TL;DR: Real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe0.5Co 0.5Si using Lorentz transmission electron microscopy reveals a controlled nanometre-scale spin topology, which may be useful in observing unconventional magneto-transport effects.
Related Papers (5)