scispace - formally typeset
Open AccessJournal ArticleDOI

Current-driven dynamics of chiral ferromagnetic domain walls

TLDR
This work directly confirms the DW chirality and rigidity by examining current-driven DW dynamics with magnetic fields applied perpendicular and parallel to the spin spiral and resolves the origin of controversial experimental results.
Abstract
In most ferromagnets the magnetization rotates from one domain to the next with no preferred handedness. However, broken inversion symmetry can lift the chiral degeneracy, leading to topologically rich spin textures such as spin spirals and skyrmions through the Dzyaloshinskii-Moriya interaction (DMI). Here we show that in ultrathin metallic ferromagnets sandwiched between a heavy metal and an oxide, the DMI stabilizes chiral domain walls (DWs) whose spin texture enables extremely efficient current-driven motion. We show that spin torque from the spin Hall effect drives DWs in opposite directions in Pt/CoFe/MgO and Ta/CoFe/MgO, which can be explained only if the DWs assume a Neel configuration with left-handed chirality. We directly confirm the DW chirality and rigidity by examining current-driven DW dynamics with magnetic fields applied perpendicular and parallel to the spin spiral. This work resolves the origin of controversial experimental results and highlights a new path towards interfacial design of spintronic devices.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Spin Hall effects

TL;DR: In solid-state materials with strong relativistic spin-orbit coupling, charge currents generate transverse spin currents as discussed by the authors and the associated spin Hall and inverse spin Hall effects distinguish between charge and spin current where electron charge is a conserved quantity but its spin direction is not.
Journal ArticleDOI

Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures

TL;DR: It is demonstrated by numerical investigations that an isolated skyrmion can be a stable configuration in a nanostructure, can be locally nucleated by injection of spin-polarized current, and can be displaced by current-induced spin torques, even in the presence of large defects.
Journal ArticleDOI

Magnetic skyrmions: advances in physics and potential applications

TL;DR: A review of the underlying physics of the stabilization of skyrmions at room temperature and their prospective use for spintronic applications is discussed in this paper, where the development of topological spintronics holds promise for applications in the mid-term furure, even though many challenges such as the achievement of writing, processing and reading functionalities at room-temperature and in all-electrical manipulation schemes, still lie ahead.
Journal ArticleDOI

Antiferromagnetic spintronics

TL;DR: A review of the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials can be found in this article, where the authors discuss some of the remaining bottlenecks and suggest possible avenues for future research.
References
More filters
Journal ArticleDOI

Magnetic Domain-Wall Racetrack Memory

TL;DR: The racetrack memory described in this review comprises an array of magnetic nanowires arranged horizontally or vertically on a silicon chip and is an example of the move toward innately three-dimensional microelectronic devices.
Journal ArticleDOI

Spin-torque switching with the giant spin hall effect of tantalum

TL;DR: In this paper, a giant spin Hall effect (SHE) in β-tantalum was shown to generate spin currents intense enough to induce spin-torque switching of ferromagnets at room temperature.
Journal ArticleDOI

A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction

TL;DR: Inter interfacial perpendicular anisotropy between the ferromagnetic electrodes and the tunnel barrier of the MTJ is used by employing the material combination of CoFeB-MgO, a system widely adopted to produce a giant tunnel magnetoresistance ratio in MTJs with in-plane an isotropy.
Journal ArticleDOI

Real-space observation of a two-dimensional skyrmion crystal

TL;DR: Real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe0.5Co 0.5Si using Lorentz transmission electron microscopy reveals a controlled nanometre-scale spin topology, which may be useful in observing unconventional magneto-transport effects.
Journal ArticleDOI

Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection

TL;DR: To prove the potential of in-plane current switching for spintronic applications, this work constructs a reprogrammable magnetic switch that can be integrated into non-volatile memory and logic architectures.
Related Papers (5)